6.
Li X, Yan M, Xiao J, Lian H
. Ultrafast fabrication of deep eutectic solvent flexible ionic gel with high-transmittance, freeze-resistant and conductivity by frontal polymerization. J Colloid Interface Sci. 2023; 650(Pt B):1382-1392.
DOI: 10.1016/j.jcis.2023.07.038.
View
7.
Si L, Zheng X, Nie J, Yin R, Hua Y, Zhu X
. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties. Chem Commun (Camb). 2016; 52(54):8365-8.
DOI: 10.1039/c6cc02665f.
View
8.
Zhang W, Wu B, Sun S, Wu P
. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun. 2021; 12(1):4082.
PMC: 8253733.
DOI: 10.1038/s41467-021-24382-4.
View
9.
Shaibuna M, Theresa L, Sreekumar K
. Neoteric deep eutectic solvents: history, recent developments, and catalytic applications. Soft Matter. 2022; 18(14):2695-2721.
DOI: 10.1039/d1sm01797g.
View
10.
Wan H, Wu B, Hou L, Wu P
. Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. Adv Mater. 2023; 36(2):e2307290.
DOI: 10.1002/adma.202307290.
View
11.
Li W, Wang X, Liu Z, Zou X, Shen Z, Liu D
. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat Mater. 2023; 23(1):131-138.
DOI: 10.1038/s41563-023-01697-9.
View
12.
Zhong D, Wu C, Jiang Y, Yuan Y, Kim M, Nishio Y
. High-speed and large-scale intrinsically stretchable integrated circuits. Nature. 2024; 627(8003):313-320.
DOI: 10.1038/s41586-024-07096-7.
View
13.
Tang N, Jiang Y, Wei K, Zheng Z, Zhang H, Hu J
. Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels. Adv Mater. 2023; 36(6):e2309576.
DOI: 10.1002/adma.202309576.
View
14.
Li P, Sun W, Li J, Chen J, Wang X, Mei Z
. N-type semiconducting hydrogel. Science. 2024; 384(6695):557-563.
DOI: 10.1126/science.adj4397.
View
15.
Hansen B, Spittle S, Chen B, Poe D, Zhang Y, Klein J
. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev. 2020; 121(3):1232-1285.
DOI: 10.1021/acs.chemrev.0c00385.
View
16.
He X, Zhang B, Liu Q, Chen H, Cheng J, Jian B
. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat Commun. 2024; 15(1):6431.
PMC: 11291765.
DOI: 10.1038/s41467-024-50797-w.
View
17.
Morelle X, Illeperuma W, Tian K, Bai R, Suo Z, Vlassak J
. Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Adv Mater. 2018; 30(35):e1801541.
DOI: 10.1002/adma.201801541.
View
18.
Li Q, Liu Z, Zheng S, Li W, Ren Y, Li L
. Three-Dimensional Printable, Highly Conductive Ionic Elastomers for High-Sensitivity Iontronics. ACS Appl Mater Interfaces. 2022; 14(22):26068-26076.
DOI: 10.1021/acsami.2c06682.
View
19.
Huang Z, Xu L, Liu P, Peng J
. Transparent, mechanically robust, conductive, self-healable, and recyclable ionogels for flexible strain sensors and electroluminescent devices. RSC Adv. 2024; 14(38):28234-28243.
PMC: 11372454.
DOI: 10.1039/d4ra05446f.
View
20.
Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L
. Ionic liquid-based click-ionogels. Sci Adv. 2019; 5(8):eaax0648.
PMC: 6707778.
DOI: 10.1126/sciadv.aax0648.
View