6.
Sibai B
. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol. 2003; 102(1):181-92.
DOI: 10.1016/s0029-7844(03)00475-7.
View
7.
Santillan M, Santillan D, Scroggins S, Min J, Sandgren J, Pearson N
. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension. 2014; 64(4):852-9.
PMC: 4162750.
DOI: 10.1161/HYPERTENSIONAHA.114.03848.
View
8.
Redman C, Sargent I
. Pre-eclampsia, the placenta and the maternal systemic inflammatory response--a review. Placenta. 2003; 24 Suppl A:S21-7.
DOI: 10.1053/plac.2002.0930.
View
9.
Zeisler H, Llurba E, Chantraine F, Vatish M, Staff A, Sennstrom M
. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N Engl J Med. 2016; 374(1):13-22.
DOI: 10.1056/NEJMoa1414838.
View
10.
Klein E, Schlembach D, Ramoni A, Langer E, Bahlmann F, Grill S
. Influence of the sFlt-1/PlGF Ratio on Clinical Decision-Making in Women with Suspected Preeclampsia. PLoS One. 2016; 11(5):e0156013.
PMC: 4887119.
DOI: 10.1371/journal.pone.0156013.
View
11.
Maynard S, Min J, Merchan J, Lim K, Li J, Mondal S
. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003; 111(5):649-58.
PMC: 151901.
DOI: 10.1172/JCI17189.
View
12.
Nobrega G, Guida J, Novaes J, Solda L, Pietro L, Luz A
. Role of biomarkers (sFlt-1/PlGF) in cases of COVID-19 for distinguishing preeclampsia and guiding clinical management. Pregnancy Hypertens. 2022; 31:32-37.
PMC: 9719935.
DOI: 10.1016/j.preghy.2022.11.008.
View
13.
Verlohren S, Brennecke S, Galindo A, Karumanchi S, Mirkovic L, Schlembach D
. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2021; 27:42-50.
DOI: 10.1016/j.preghy.2021.12.003.
View
14.
Leanos-Miranda A, Inova Campos-Galicia , Ramirez-Valenzuela K, Chinolla-Arellano Z, Isordia-Salas I
. Circulating angiogenic factors and urinary prolactin as predictors of adverse outcomes in women with preeclampsia. Hypertension. 2013; 61(5):1118-25.
DOI: 10.1161/HYPERTENSIONAHA.111.00754.
View
15.
MacDonald T, Walker S, Hannan N, Tong S, Kaituu-Lino T
. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine. 2021; 75:103780.
PMC: 8718967.
DOI: 10.1016/j.ebiom.2021.103780.
View
16.
Roh Y, Jee Lee H, Kim J, Kim H, Kim S, Bong K
. Precipitation-based colorimetric multiplex immunoassay in hydrogel particles. Lab Chip. 2020; 20(16):2841-2850.
DOI: 10.1039/d0lc00325e.
View
17.
Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T
. Pathophysiology of Preeclampsia: The Role of Exosomes. Int J Mol Sci. 2021; 22(5).
PMC: 7961527.
DOI: 10.3390/ijms22052572.
View
18.
Zou G, Ji Q, Geng Z, Du X, Jiang L, Liu T
. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia. Hereditas. 2022; 159(1):35.
PMC: 9484067.
DOI: 10.1186/s41065-022-00250-z.
View
19.
Dutta S, Kumar S, Hyett J, Salomon C
. Molecular Targets of Aspirin and Prevention of Preeclampsia and Their Potential Association with Circulating Extracellular Vesicles during Pregnancy. Int J Mol Sci. 2019; 20(18).
PMC: 6769718.
DOI: 10.3390/ijms20184370.
View
20.
Chang X, Yao J, He Q, Liu M, Duan T, Wang K
. Exosomes From Women With Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells. Hypertension. 2018; 72(6):1381-1390.
DOI: 10.1161/HYPERTENSIONAHA.118.11706.
View