6.
Asher G, Lotem J, Tsvetkov P, Reiss V, Sachs L, Shaul Y
. P53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1. Proc Natl Acad Sci U S A. 2003; 100(25):15065-70.
PMC: 299908.
DOI: 10.1073/pnas.2436329100.
View
7.
Kober C, Roewe J, Schmees N, Roese L, Roehn U, Bader B
. Targeting the aryl hydrocarbon receptor (AhR) with BAY 2416964: a selective small molecule inhibitor for cancer immunotherapy. J Immunother Cancer. 2023; 11(11).
PMC: 10649913.
DOI: 10.1136/jitc-2023-007495.
View
8.
Asher G, Lotem J, Kama R, Sachs L, Shaul Y
. NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci U S A. 2002; 99(5):3099-104.
PMC: 122479.
DOI: 10.1073/pnas.052706799.
View
9.
Kim E, Deng C, Sporn M, Royce D, Risingsong R, Williams C
. CDDO-methyl ester delays breast cancer development in BRCA1-mutated mice. Cancer Prev Res (Phila). 2011; 5(1):89-97.
PMC: 3252488.
DOI: 10.1158/1940-6207.CAPR-11-0359.
View
10.
Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C
. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001; 276(34):32008-15.
DOI: 10.1074/jbc.M104794200.
View
11.
Fan X, Leung E, Xie Y, Liu Z, Zheng Y, Yao X
. Suppression of Lipogenesis via Reactive Oxygen Species-AMPK Signaling for Treating Malignant and Proliferative Diseases. Antioxid Redox Signal. 2017; 28(5):339-357.
DOI: 10.1089/ars.2017.7090.
View
12.
Kumar H, Kumar R, Bhattacharjee D, Somanna P, Jain V
. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol. 2022; 13:720076.
PMC: 9098811.
DOI: 10.3389/fphar.2022.720076.
View
13.
Chen X, Dodd G, Thomas S, Zhang X, Wasserman M, Rovin B
. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2005; 290(5):H1862-70.
DOI: 10.1152/ajpheart.00651.2005.
View
14.
Ramos-Gomez M, Kwak M, Dolan P, Itoh K, Yamamoto M, Talalay P
. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A. 2001; 98(6):3410-5.
PMC: 30667.
DOI: 10.1073/pnas.051618798.
View
15.
Gao A, Ke Z, Wang J, Yang J, Chen S, Chen H
. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. 2013; 34(8):1806-14.
DOI: 10.1093/carcin/bgt108.
View
16.
Young S, Baird T, Wek R
. Translation Regulation of the Glutamyl-prolyl-tRNA Synthetase Gene EPRS through Bypass of Upstream Open Reading Frames with Noncanonical Initiation Codons. J Biol Chem. 2016; 291(20):10824-35.
PMC: 4865927.
DOI: 10.1074/jbc.M116.722256.
View
17.
Zhou S, Ye W, Zhang M, Liang J
. The effects of nrf2 on tumor angiogenesis: a review of the possible mechanisms of action. Crit Rev Eukaryot Gene Expr. 2012; 22(2):149-60.
DOI: 10.1615/critreveukargeneexpr.v22.i2.60.
View
18.
Cao P, Gu J, Liu M, Wang Y, Chen M, Jiang Y
. BRMS1L confers anticancer activity in non-small cell lung cancer by transcriptionally inducing a redox imbalance in the GPX2-ROS pathway. Transl Oncol. 2024; 41:101870.
PMC: 10832508.
DOI: 10.1016/j.tranon.2023.101870.
View
19.
Cabello C, Bair 3rd W, Lamore S, Ley S, Bause A, Azimian S
. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2008; 46(2):220-31.
PMC: 2650023.
DOI: 10.1016/j.freeradbiomed.2008.10.025.
View
20.
Gomes A, Ramos H, Soares J, Saraiva L
. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res. 2018; 131:75-86.
DOI: 10.1016/j.phrs.2018.03.015.
View