6.
Josefowicz S, Lu L, Rudensky A
. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012; 30:531-64.
PMC: 6066374.
DOI: 10.1146/annurev.immunol.25.022106.141623.
View
7.
Lopez-Abente J, Correa-Rocha R, Pion M
. Corrigendum: Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol. 2018; 9:792.
PMC: 5917074.
DOI: 10.3389/fimmu.2018.00792.
View
8.
Sojka D, Huang Y, Fowell D
. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology. 2008; 124(1):13-22.
PMC: 2434375.
DOI: 10.1111/j.1365-2567.2008.02813.x.
View
9.
Taams L, van Amelsfort J, Tiemessen M, Jacobs K, de Jong E, Akbar A
. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol. 2005; 66(3):222-30.
PMC: 3904343.
DOI: 10.1016/j.humimm.2004.12.006.
View
10.
Mogensen T, Melchjorsen J, Larsen C, Paludan S
. Innate immune recognition and activation during HIV infection. Retrovirology. 2010; 7:54.
PMC: 2904714.
DOI: 10.1186/1742-4690-7-54.
View
11.
Jung M, Kwak J, Shin E
. IL-17A-Producing Foxp3 Regulatory T Cells and Human Diseases. Immune Netw. 2017; 17(5):276-286.
PMC: 5662777.
DOI: 10.4110/in.2017.17.5.276.
View
12.
Chase A, Yang H, Zhang H, Blankson J, Siliciano R
. Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors correlates with low CD4+ T-cell activation. J Virol. 2008; 82(17):8307-15.
PMC: 2519624.
DOI: 10.1128/JVI.00520-08.
View
13.
Moreno-Fernandez M, Zapata W, Blackard J, Franchini G, Chougnet C
. Human regulatory T cells are targets for human immunodeficiency Virus (HIV) infection, and their susceptibility differs depending on the HIV type 1 strain. J Virol. 2009; 83(24):12925-33.
PMC: 2786841.
DOI: 10.1128/JVI.01352-09.
View
14.
Li L, Liu Y, Bao Z, Chen L, Wang Z, Li T
. Analysis of CD4+CD25+Foxp3+ regulatory T cells in HIV-exposed seronegative persons and HIV-infected persons with different disease progressions. Viral Immunol. 2011; 24(1):57-60.
DOI: 10.1089/vim.2010.0079.
View
15.
Caridade M, Graca L, Ribeiro R
. Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models. Front Immunol. 2013; 4:378.
PMC: 3831161.
DOI: 10.3389/fimmu.2013.00378.
View
16.
Doitsh G, Greene W
. Dissecting How CD4 T Cells Are Lost During HIV Infection. Cell Host Microbe. 2016; 19(3):280-91.
PMC: 4835240.
DOI: 10.1016/j.chom.2016.02.012.
View
17.
Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum C, Chougnet C
. Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One. 2011; 6(12):e28118.
PMC: 3230597.
DOI: 10.1371/journal.pone.0028118.
View
18.
Macatangay B, Szajnik M, Whiteside T, Riddler S, Rinaldo C
. Regulatory T cell suppression of Gag-specific CD8 T cell polyfunctional response after therapeutic vaccination of HIV-1-infected patients on ART. PLoS One. 2010; 5(3):e9852.
PMC: 2844424.
DOI: 10.1371/journal.pone.0009852.
View
19.
Brites-Alves C, Luz E, Netto E, Ferreira T, Diaz R, Pedroso C
. Immune Activation, Proinflammatory Cytokines, and Conventional Risks for Cardiovascular Disease in HIV Patients: A Case-Control Study in Bahia, Brazil. Front Immunol. 2018; 9:1469.
PMC: 6028567.
DOI: 10.3389/fimmu.2018.01469.
View
20.
Walter G, Evans H, Menon B, Gullick N, Kirkham B, Cope A
. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45ro+CD25+CD127(low) regulatory T cells. Arthritis Rheum. 2013; 65(3):627-38.
PMC: 3947722.
DOI: 10.1002/art.37832.
View