6.
Zhou N, Luther G, Chan C
. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile . Environ Sci Technol. 2021; 55(13):9362-9371.
DOI: 10.1021/acs.est.1c00497.
View
7.
Emerson D, Field E, Chertkov O, Davenport K, Goodwin L, Munk C
. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol. 2013; 4:254.
PMC: 3770913.
DOI: 10.3389/fmicb.2013.00254.
View
8.
Bozzini B, Gianoncelli A, Bocchetta P, Dal Zilio S, Kourousias G
. Fabrication of a sealed electrochemical microcell for in situ soft X-ray microspectroscopy and testing with in situ co-polypyrrole composite electrodeposition for Pt-free oxygen electrocatalysis. Anal Chem. 2013; 86(1):664-70.
DOI: 10.1021/ac403004v.
View
9.
Wu C, Weatherup R, Salmeron M
. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Phys Chem Chem Phys. 2015; 17(45):30229-39.
DOI: 10.1039/c5cp04058b.
View
10.
Ravel B, Newville M
. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005; 12(Pt 4):537-41.
DOI: 10.1107/S0909049505012719.
View
11.
Brenker J, Henzler K, Borca C, Huthwelker T, Alan T
. X-ray compatible microfluidics for studies of chemical state, transport and reaction of light elements in an aqueous environment using synchrotron radiation. Lab Chip. 2022; 22(6):1214-1230.
DOI: 10.1039/d1lc00996f.
View
12.
Picard A, Kappler A, Schmid G, Quaroni L, Obst M
. Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun. 2015; 6:6277.
DOI: 10.1038/ncomms7277.
View
13.
Friend J, Yeo L
. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics. 2010; 4(2).
PMC: 2917889.
DOI: 10.1063/1.3259624.
View
14.
Lawrence J, Swerhone G, Leppard G, Araki T, Zhang X, West M
. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol. 2003; 69(9):5543-54.
PMC: 194976.
DOI: 10.1128/AEM.69.9.5543-5554.2003.
View
15.
Daeneke T, Uemura Y, Duffy N, Mozer A, Koumura N, Bach U
. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Adv Mater. 2012; 24(9):1222-5.
DOI: 10.1002/adma.201104837.
View
16.
Schmid G, Zeitvogel F, Hao L, Ingino P, Adaktylou I, Eickhoff M
. Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell-Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria. Environ Sci Technol. 2015; 50(1):114-25.
DOI: 10.1021/acs.est.5b02955.
View
17.
Chan C, Fakra S, Emerson D, Fleming E, Edwards K
. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 2010; 5(4):717-27.
PMC: 3105749.
DOI: 10.1038/ismej.2010.173.
View
18.
Frenzel N, Hartley J, Frisch G
. Voltammetric and spectroscopic study of ferrocene and hexacyanoferrate and the suitability of their redox couples as internal standards in ionic liquids. Phys Chem Chem Phys. 2017; 19(42):28841-28852.
DOI: 10.1039/c7cp05483a.
View
19.
Zhang C, Eraky H, Tan S, Hitchcock A, Higgins D
. Studies of Copper-Based CO Reduction Electrocatalysts by Scanning Transmission Soft X-ray Microscopy. ACS Nano. 2023; 17(21):21337-21348.
DOI: 10.1021/acsnano.3c05964.
View
20.
Kunnus K, Zhang W, Delcey M, Pinjari R, Miedema P, Schreck S
. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives. J Phys Chem B. 2016; 120(29):7182-94.
DOI: 10.1021/acs.jpcb.6b04751.
View