6.
Golshan M, Karimi D, Mahdavi S, Lobo J, Peacock M, Salcudean S
. Automatic detection of brachytherapy seeds in 3D ultrasound images using a convolutional neural network. Phys Med Biol. 2019; 65(3):035016.
DOI: 10.1088/1361-6560/ab64b5.
View
7.
Rodriguez Outeiral R, Gonzalez P, Schaake E, van der Heide U, Simoes R
. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy. Radiat Oncol. 2023; 18(1):91.
PMC: 10227985.
DOI: 10.1186/s13014-023-02283-8.
View
8.
Podgorsak A, Venkatesulu B, Abuhamad M, Harkenrider M, Solanki A, Roeske J
. Dosimetric and workflow impact of synthetic-MRI use in prostate high-dose-rate brachytherapy. Brachytherapy. 2023; 22(5):686-696.
DOI: 10.1016/j.brachy.2023.05.005.
View
9.
Gao Y, Gonzalez Y, Nwachukwu C, Albuquerque K, Jia X
. Predicting treatment plan approval probability for high-dose-rate brachytherapy of cervical cancer using adversarial deep learning. Phys Med Biol. 2024; 69(9).
PMC: 11023000.
DOI: 10.1088/1361-6560/ad3880.
View
10.
Ecker S, Zimmermann L, Heilemann G, Niatsetski Y, Schmid M, Sturdza A
. Neural network-assisted automated image registration for MRI-guided adaptive brachytherapy in cervical cancer. Z Med Phys. 2022; 32(4):488-499.
PMC: 9948828.
DOI: 10.1016/j.zemedi.2022.04.002.
View
11.
Lei Y, Wang T, Roper J, Jani A, Patel S, Curran W
. Male pelvic multi-organ segmentation on transrectal ultrasound using anchor-free mask CNN. Med Phys. 2021; 48(6):3055-3064.
PMC: 11700376.
DOI: 10.1002/mp.14895.
View
12.
Karimi D, Zeng Q, Mathur P, Avinash A, Mahdavi S, Spadinger I
. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Med Image Anal. 2019; 57:186-196.
DOI: 10.1016/j.media.2019.07.005.
View
13.
Peters M, van Son M, Moerland M, Kerkmeijer L, Eppinga W, Meijer R
. MRI-Guided Ultrafocal HDR Brachytherapy for Localized Prostate Cancer: Median 4-Year Results of a feasibility study. Int J Radiat Oncol Biol Phys. 2019; 104(5):1045-1053.
DOI: 10.1016/j.ijrobp.2019.03.032.
View
14.
Yusufaly T, Meyers S, Mell L, Moore K
. Knowledge-Based Planning for Intact Cervical Cancer. Semin Radiat Oncol. 2020; 30(4):328-339.
DOI: 10.1016/j.semradonc.2020.05.009.
View
15.
Boussion N, Schick U, Dissaux G, Ollivier L, Goasduff G, Pradier O
. A machine-learning approach based on 409 treatments to predict optimal number of iodine-125 seeds in low-dose-rate prostate brachytherapy. J Contemp Brachytherapy. 2021; 13(5):541-548.
PMC: 8565637.
DOI: 10.5114/jcb.2021.109789.
View
16.
Zhang Y, He X, Tian Z, Jeong J, Lei Y, Wang T
. Multi-Needle Detection in 3D Ultrasound Images Using Unsupervised Order-Graph Regularized Sparse Dictionary Learning. IEEE Trans Med Imaging. 2020; 39(7):2302-2315.
PMC: 7370243.
DOI: 10.1109/TMI.2020.2968770.
View
17.
Grimm P, Billiet I, Bostwick D, Dicker A, Frank S, Immerzeel J
. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 2012; 109 Suppl 1:22-9.
DOI: 10.1111/j.1464-410X.2011.10827.x.
View
18.
Yoganathan S, Paul S, Paloor S, Torfeh T, Halsnad Chandramouli S, Hammoud R
. Automatic segmentation of magnetic resonance images for high-dose-rate cervical cancer brachytherapy using deep learning. Med Phys. 2022; 49(3):1571-1584.
DOI: 10.1002/mp.15506.
View
19.
Skowronek J
. Current status of brachytherapy in cancer treatment - short overview. J Contemp Brachytherapy. 2018; 9(6):581-589.
PMC: 5808003.
DOI: 10.5114/jcb.2017.72607.
View
20.
Rajpurkar P, Chen E, Banerjee O, Topol E
. AI in health and medicine. Nat Med. 2022; 28(1):31-38.
DOI: 10.1038/s41591-021-01614-0.
View