6.
Mao G, Liang J, Wang Q, Zhao C, Bai Y, Liu R
. Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. J Environ Sci (China). 2020; 101:27-35.
DOI: 10.1016/j.jes.2020.05.014.
View
7.
Kumarasamy K, Toleman M, Walsh T, Bagaria J, Butt F, Balakrishnan R
. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9):597-602.
PMC: 2933358.
DOI: 10.1016/S1473-3099(10)70143-2.
View
8.
Karkman A, Parnanen K, Larsson D
. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019; 10(1):80.
PMC: 6325112.
DOI: 10.1038/s41467-018-07992-3.
View
9.
Kang D, Li F, Kirton E, Thomas A, Egan R, An H
. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019; 7:e7359.
PMC: 6662567.
DOI: 10.7717/peerj.7359.
View
10.
Li Z, Guo X, Liu B, Huang T, Liu R, Liu X
. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants. Water Res. 2024; 253:121289.
DOI: 10.1016/j.watres.2024.121289.
View
11.
Roberts M
. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005; 245(2):195-203.
DOI: 10.1016/j.femsle.2005.02.034.
View
12.
Sta Ana K, Madriaga J, Espino M
. β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Environ Pollut. 2021; 275:116624.
DOI: 10.1016/j.envpol.2021.116624.
View
13.
Zhao R, Yu K, Zhang J, Zhang G, Huang J, Ma L
. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Res. 2020; 186:116318.
DOI: 10.1016/j.watres.2020.116318.
View
14.
Zhang X, Zhang T, Fang H
. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009; 82(3):397-414.
DOI: 10.1007/s00253-008-1829-z.
View
15.
Beghini F, McIver L, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S
. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021; 10.
PMC: 8096432.
DOI: 10.7554/eLife.65088.
View
16.
Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T
. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother. 2003; 52(4):572-5.
DOI: 10.1093/jac/dkg390.
View
17.
Che Y, Xia Y, Liu L, Li A, Yang Y, Zhang T
. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome. 2019; 7(1):44.
PMC: 6429696.
DOI: 10.1186/s40168-019-0663-0.
View
18.
Li D, Liu C, Luo R, Sadakane K, Lam T
. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10):1674-6.
DOI: 10.1093/bioinformatics/btv033.
View
19.
Eftekhar PhD F, Seyedpour MSc S
. Prevalence of qnr and aac(6')-Ib-cr Genes in Clinical Isolates of Klebsiella Pneumoniae from Imam Hussein Hospital in Tehran. Iran J Med Sci. 2015; 40(6):515-21.
PMC: 4628142.
View
20.
Chen W, Wu J
. Microbiome composition resulting from different substrates influences trichloroethene dechlorination performance. J Environ Manage. 2021; 303:114145.
DOI: 10.1016/j.jenvman.2021.114145.
View