6.
Patel M, Kumar R, Kishor K, Mlsna T, Pittman Jr C, Mohan D
. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev. 2019; 119(6):3510-3673.
DOI: 10.1021/acs.chemrev.8b00299.
View
7.
Jorgensen S, Halling-Sorensen B
. Drugs in the environment. Chemosphere. 2000; 40(7):691-9.
DOI: 10.1016/s0045-6535(99)00438-5.
View
8.
Akpan U, Hameed B
. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 2009; 170(2-3):520-9.
DOI: 10.1016/j.jhazmat.2009.05.039.
View
9.
Dabic D, Babic S, Skoric I
. The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere. 2019; 230:268-277.
DOI: 10.1016/j.chemosphere.2019.05.032.
View
10.
Gayathri P, Nair D, Gopinath G, Pilla D, Joseph S
. Solar Photocatalysis for the Decontamination Of Water from Emerging Pharmaceutical Pollutant Chloroquine Using Nano ZnO as the Catalyst. Water Air Soil Pollut. 2023; 234(3):146.
PMC: 9936940.
DOI: 10.1007/s11270-023-06148-4.
View
11.
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P
. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020; 71(15):732-739.
PMC: 7108130.
DOI: 10.1093/cid/ciaa237.
View
12.
Quesada H, Baptista A, Cusioli L, Seibert D, Bezerra C, Bergamasco R
. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere. 2019; 222:766-780.
DOI: 10.1016/j.chemosphere.2019.02.009.
View
13.
Dastborhan M, Khataee A, Arefi-Oskoui S, Yoon Y
. Synthesis of flower-like MoS/CNTs nanocomposite as an efficient catalyst for the sonocatalytic degradation of hydroxychloroquine. Ultrason Sonochem. 2022; 87:106058.
PMC: 9213255.
DOI: 10.1016/j.ultsonch.2022.106058.
View
14.
Baby J, Akila B, Chiu T, Sakthinathan S, V A, Zealma B A
. Deep Eutectic Solvent-Assisted Synthesis of a Strontium Tungstate Bifunctional Catalyst: Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Acetaminophen and Metformin Drugs. Inorg Chem. 2023; 62(21):8249-8260.
DOI: 10.1021/acs.inorgchem.3c00676.
View
15.
da Silva P, Nippes R, Macruz P, Hegeto F, Scaliante M
. Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite. Water Sci Technol. 2021; 84(3):763-776.
DOI: 10.2166/wst.2021.265.
View
16.
Fent K, Weston A, Caminada D
. Ecotoxicology of human pharmaceuticals. Aquat Toxicol. 2005; 76(2):122-59.
DOI: 10.1016/j.aquatox.2005.09.009.
View
17.
Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G
. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020; 382(25):2411-2418.
PMC: 7224609.
DOI: 10.1056/NEJMoa2012410.
View
18.
Bound J, Voulvoulis N
. Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United kingdom. Environ Health Perspect. 2005; 113(12):1705-11.
PMC: 1314909.
DOI: 10.1289/ehp.8315.
View
19.
Chen Q, Hao Y, Song Z, Liu M, Chen D, Zhu B
. Optimization of photocatalytic degradation conditions and toxicity assessment of norfloxacin under visible light by new lamellar structure magnetic ZnO/g-CN. Ecotoxicol Environ Saf. 2021; 225:112742.
DOI: 10.1016/j.ecoenv.2021.112742.
View
20.
Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E
. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci. 2016; 229:80-107.
DOI: 10.1016/j.cis.2015.12.008.
View