6.
Schalkwijk C, Stehouwer C
. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev. 2019; 100(1):407-461.
DOI: 10.1152/physrev.00001.2019.
View
7.
Lu S
. Glutathione synthesis. Biochim Biophys Acta. 2012; 1830(5):3143-53.
PMC: 3549305.
DOI: 10.1016/j.bbagen.2012.09.008.
View
8.
Misra K, Banerjee A, Ray S, Ray M
. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J. 1995; 305 ( Pt 3):999-1003.
PMC: 1136357.
DOI: 10.1042/bj3050999.
View
9.
Ku J, Gan Y
. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol. 2021; 44:102012.
PMC: 8182430.
DOI: 10.1016/j.redox.2021.102012.
View
10.
Pariano M, Costantini C, Santarelli I, Puccetti M, Giovagnoli S, Talesa V
. Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines (Basel). 2021; 9(11).
PMC: 8625157.
DOI: 10.3390/vaccines9111311.
View
11.
Ochsner U, Vasil M, Alsabbagh E, Parvatiyar K, Hassett D
. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol. 2000; 182(16):4533-44.
PMC: 94625.
DOI: 10.1128/JB.182.16.4533-4544.2000.
View
12.
El Qaidi S, Scott N, Hays M, Geisbrecht B, Watkins S, Hardwidge P
. An intra-bacterial activity for a T3SS effector. Sci Rep. 2020; 10(1):1073.
PMC: 6978387.
DOI: 10.1038/s41598-020-58062-y.
View
13.
Hasim S, Ahmad Hussin N, Alomar F, Bidasee K, Nickerson K, Wilson M
. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J Biol Chem. 2013; 289(3):1662-74.
PMC: 3894345.
DOI: 10.1074/jbc.M113.505784.
View
14.
Mould D, Stevanovic M, Ashare A, Schultz D, Hogan D
. Metabolic basis for the evolution of a common pathogenic variant. Elife. 2022; 11.
PMC: 9224983.
DOI: 10.7554/eLife.76555.
View
15.
Michie K, Dees J, Fleming D, Moustafa D, Goldberg J, Rumbaugh K
. Role of Pseudomonas aeruginosa Glutathione Biosynthesis in Lung and Soft Tissue Infection. Infect Immun. 2020; 88(6).
PMC: 7240086.
DOI: 10.1128/IAI.00116-20.
View
16.
Zhang Y, Duan K
. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa. Sci China C Life Sci. 2009; 52(6):501-5.
DOI: 10.1007/s11427-009-0074-8.
View
17.
Roum J, Buhl R, McElvaney N, Borok Z, Crystal R
. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985). 1993; 75(6):2419-24.
DOI: 10.1152/jappl.1993.75.6.2419.
View
18.
Bouzo D, Cokcetin N, Li L, Ballerin G, Bottomley A, Lazenby J
. Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems. 2020; 5(3).
PMC: 7329319.
DOI: 10.1128/mSystems.00106-20.
View
19.
Richarme G, Abdallah J, Mathas N, Gautier V, Dairou J
. Further characterization of the Maillard deglycase DJ-1 and its prokaryotic homologs, deglycase 1/Hsp31, deglycase 2/YhbO, and deglycase 3/YajL. Biochem Biophys Res Commun. 2018; 503(2):703-709.
DOI: 10.1016/j.bbrc.2018.06.064.
View
20.
Moreno R, Hernandez-Arranz S, La Rosa R, Yuste L, Madhushani A, Shingler V
. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol. 2014; 17(1):105-18.
DOI: 10.1111/1462-2920.12499.
View