6.
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P, Nam H
. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005; 42(4):567-85.
DOI: 10.1111/j.1365-313X.2005.02399.x.
View
7.
Frugoli J, Zhong H, Nuccio M, McCourt P, McPeek M, Thomas T
. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996; 112(1):327-36.
PMC: 157953.
DOI: 10.1104/pp.112.1.327.
View
8.
Fu Z, Feng Y, Gao X, Ding F, Li J, Yuan T
. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. Plant Cell. 2023; 35(5):1593-1616.
PMC: 10118271.
DOI: 10.1093/plcell/koad019.
View
9.
Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G
. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis. Mol Plant. 2016; 9(9):1272-1285.
DOI: 10.1016/j.molp.2016.06.006.
View
10.
Guo Y, Gan S
. Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol. 2005; 71:83-112.
DOI: 10.1016/S0070-2153(05)71003-6.
View
11.
Guo P, Li Z, Huang P, Li B, Fang S, Chu J
. A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. Plant Cell. 2017; 29(11):2854-2870.
PMC: 5728132.
DOI: 10.1105/tpc.17.00438.
View
12.
Gutscher M, Sobotta M, Wabnitz G, Ballikaya S, Meyer A, Samstag Y
. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem. 2009; 284(46):31532-40.
PMC: 2797222.
DOI: 10.1074/jbc.M109.059246.
View
13.
He Y, Fukushige H, Hildebrand D, Gan S
. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 2002; 128(3):876-84.
PMC: 152201.
DOI: 10.1104/pp.010843.
View
14.
Hooijmaijers C, Rhee J, Kwak K, Chung G, Horie T, Katsuhara M
. Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res. 2011; 125(1):147-53.
DOI: 10.1007/s10265-011-0413-2.
View
15.
Hortensteiner S, Krautler B
. Chlorophyll breakdown in higher plants. Biochim Biophys Acta. 2010; 1807(8):977-88.
DOI: 10.1016/j.bbabio.2010.12.007.
View
16.
Hu Y, Liu S, Yuan H, Li J, Yan D, Zhang J
. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. Plant Cell Environ. 2010; 33(10):1656-70.
DOI: 10.1111/j.1365-3040.2010.02171.x.
View
17.
Huang J, Willems P, Wei B, Tian C, Ferreira R, Bodra N
. Mining for protein S-sulfenylation in uncovers redox-sensitive sites. Proc Natl Acad Sci U S A. 2019; 116(42):21256-21261.
PMC: 6800386.
DOI: 10.1073/pnas.1906768116.
View
18.
Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano P, Hisabori T
. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem. 2007; 282(27):19282-91.
DOI: 10.1074/jbc.M703324200.
View
19.
Jarvis P, Lopez-Juez E
. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol. 2013; 14(12):787-802.
DOI: 10.1038/nrm3702.
View
20.
Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain J, Jin L
. Global proteomic assessment of the classical protein-tyrosine phosphatome and "Redoxome". Cell. 2011; 146(5):826-40.
PMC: 3176638.
DOI: 10.1016/j.cell.2011.07.020.
View