» Articles » PMID: 39379460

Named Entity Recognition of Pharmacokinetic Parameters in the Scientific Literature

Abstract

The development of accurate predictions for a new drug's absorption, distribution, metabolism, and excretion profiles in the early stages of drug development is crucial due to high candidate failure rates. The absence of comprehensive, standardised, and updated pharmacokinetic (PK) repositories limits pre-clinical predictions and often requires searching through the scientific literature for PK parameter estimates from similar compounds. While text mining offers promising advancements in automatic PK parameter extraction, accurate Named Entity Recognition (NER) of PK terms remains a bottleneck due to limited resources. This work addresses this gap by introducing novel corpora and language models specifically designed for effective NER of PK parameters. Leveraging active learning approaches, we developed an annotated corpus containing over 4000 entity mentions found across the PK literature on PubMed. To identify the most effective model for PK NER, we fine-tuned and evaluated different NER architectures on our corpus. Fine-tuning BioBERT exhibited the best results, achieving a strict score of 90.37% in recognising PK parameter mentions, significantly outperforming heuristic approaches and models trained on existing corpora. To accelerate the development of end-to-end PK information extraction pipelines and improve pre-clinical PK predictions, the PK NER models and the labelled corpus were released open source at https://github.com/PKPDAI/PKNER .

References
1.
Schlander M, Hernandez-Villafuerte K, Cheng C, Mestre-Ferrandiz J, Baumann M . How Much Does It Cost to Research and Develop a New Drug? A Systematic Review and Assessment. Pharmacoeconomics. 2021; 39(11):1243-1269. PMC: 8516790. DOI: 10.1007/s40273-021-01065-y. View

2.
Wong C, Siah K, Lo A . Estimation of clinical trial success rates and related parameters. Biostatistics. 2018; 20(2):273-286. PMC: 6409418. DOI: 10.1093/biostatistics/kxx069. View

3.
DiMasi J, Grabowski H, Hansen R . Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016; 47:20-33. DOI: 10.1016/j.jhealeco.2016.01.012. View

4.
Morgan P, van der Graaf P, Arrowsmith J, Feltner D, Drummond K, Wegner C . Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today. 2012; 17(9-10):419-24. DOI: 10.1016/j.drudis.2011.12.020. View

5.
Palmer A . New horizons in drug metabolism, pharmacokinetics and drug discovery. Drug News Perspect. 2003; 16(1):57-62. View