6.
Reese J, Blau H, Casiraghi E, Bergquist T, Loomba J, Callahan T
. Generalisable long COVID subtypes: findings from the NIH N3C and RECOVER programmes. EBioMedicine. 2022; 87:104413.
PMC: 9769411.
DOI: 10.1016/j.ebiom.2022.104413.
View
7.
Thallapureddy K, Thallapureddy K, Zerda E, Suresh N, Kamat D, Rajasekaran K
. Long-Term Complications of COVID-19 Infection in Adolescents and Children. Curr Pediatr Rep. 2022; 10(1):11-17.
PMC: 8803461.
DOI: 10.1007/s40124-021-00260-x.
View
8.
Fainardi V, Meoli A, Chiopris G, Motta M, Skenderaj K, Grandinetti R
. Long COVID in Children and Adolescents. Life (Basel). 2022; 12(2).
PMC: 8876679.
DOI: 10.3390/life12020285.
View
9.
Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle N, Perelman C, Sepulveda R, Rebolledo P
. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022; 12(1):9950.
PMC: 9226045.
DOI: 10.1038/s41598-022-13495-5.
View
10.
Radtke T, Ulyte A, Puhan M, Kriemler S
. Long-term Symptoms After SARS-CoV-2 Infection in Children and Adolescents. JAMA. 2021; .
PMC: 8283661.
DOI: 10.1001/jama.2021.11880.
View
11.
Zhang H, Zang C, Xu Z, Zhang Y, Xu J, Bian J
. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat Med. 2022; 29(1):226-235.
PMC: 9873564.
DOI: 10.1038/s41591-022-02116-3.
View
12.
De Freitas J, Johnson K, Golden E, Nadkarni G, Dudley J, Bottinger E
. Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records. Patterns (N Y). 2021; 2(9):100337.
PMC: 8441576.
DOI: 10.1016/j.patter.2021.100337.
View
13.
Forrest C, Burrows E, Mejias A, Razzaghi H, Christakis D, Jhaveri R
. Severity of Acute COVID-19 in Children <18 Years Old March 2020 to December 2021. Pediatrics. 2022; 149(4).
DOI: 10.1542/peds.2021-055765.
View
14.
Zheng Y, Zeng N, Yuan K, Tian S, Yang Y, Gao N
. Prevalence and risk factor for long COVID in children and adolescents: A meta-analysis and systematic review. J Infect Public Health. 2023; 16(5):660-672.
PMC: 9990879.
DOI: 10.1016/j.jiph.2023.03.005.
View
15.
Khullar D, Zhang Y, Zang C, Xu Z, Wang F, Weiner M
. Racial/Ethnic Disparities in Post-acute Sequelae of SARS-CoV-2 Infection in New York: an EHR-Based Cohort Study from the RECOVER Program. J Gen Intern Med. 2023; 38(5):1127-1136.
PMC: 9933823.
DOI: 10.1007/s11606-022-07997-1.
View
16.
Simon T, Cawthon M, Popalisky J, Mangione-Smith R
. Development and Validation of the Pediatric Medical Complexity Algorithm (PMCA) Version 2.0. Hosp Pediatr. 2017; 7(7):373-377.
PMC: 5485351.
DOI: 10.1542/hpeds.2016-0173.
View
17.
Rao S, Jing N, Liu X, Lorman V, Maltenfort M, Schuchard J
. Spectrum of severity of multisystem inflammatory syndrome in children: an EHR-based cohort study from the RECOVER program. Sci Rep. 2023; 13(1):21005.
PMC: 10684592.
DOI: 10.1038/s41598-023-47655-y.
View
18.
Rao S, Lee G, Razzaghi H, Lorman V, Mejias A, Pajor N
. Clinical Features and Burden of Postacute Sequelae of SARS-CoV-2 Infection in Children and Adolescents. JAMA Pediatr. 2022; 176(10):1000-1009.
PMC: 9396470.
DOI: 10.1001/jamapediatrics.2022.2800.
View
19.
Valdez A, Hancock E, Adebayo S, Kiernicki D, Proskauer D, Attewell J
. Estimating Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and Machine Learning. Front Pediatr. 2019; 6:412.
PMC: 6331450.
DOI: 10.3389/fped.2018.00412.
View
20.
Bakken I, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L
. Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study from Norway 2008-2012. BMC Med. 2014; 12:167.
PMC: 4189623.
DOI: 10.1186/s12916-014-0167-5.
View