6.
Chen Y, Hao Y, Mensah A, Lv P, Wei Q
. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. Biomater Adv. 2022; 136:212799.
DOI: 10.1016/j.bioadv.2022.212799.
View
7.
Choi S, Lee K, Kim S, MacQueen L, Chang H, Zimmerman J
. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat Mater. 2023; 22(8):1039-1046.
PMC: 10686196.
DOI: 10.1038/s41563-023-01611-3.
View
8.
Park J, Jang J, Lee J, Cho D
. Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med. 2019; 13(6):612-621.
PMC: 6170865.
DOI: 10.1007/s13770-016-8111-8.
View
9.
Biswas S, Bhunia B, Janani G, Mandal B
. Silk Fibroin Based Formulations as Potential Hemostatic Agents. ACS Biomater Sci Eng. 2022; 8(6):2654-2663.
DOI: 10.1021/acsbiomaterials.2c00170.
View
10.
Klinkenberg M, Fischer S, Kremer T, Hernekamp F, Lehnhardt M, Daigeler A
. Comparison of anterolateral thigh, lateral arm, and parascapular free flaps with regard to donor-site morbidity and aesthetic and functional outcomes. Plast Reconstr Surg. 2013; 131(2):293-302.
DOI: 10.1097/PRS.0b013e31827786bc.
View
11.
Pazhouhnia Z, Beheshtizadeh N, Namini M, Lotfibakhshaiesh N
. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med. 2022; 7(3):e10307.
PMC: 9472017.
DOI: 10.1002/btm2.10307.
View
12.
Ramakrishnan R, Chouhan D, Vijayakumar Sreelatha H, Arumugam S, Mandal B, K Krishnan L
. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomater Sci Eng. 2022; 8(9):3856-3870.
DOI: 10.1021/acsbiomaterials.2c00328.
View
13.
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl A, Redl H
. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater. 2021; 16(2):022004.
DOI: 10.1088/1748-605X/abb615.
View
14.
Pagan E, Stefanek E, Seyfoori A, Razzaghi M, Chehri B, Mousavi A
. A handheld bioprinter for multi-material printing of complex constructs. Biofabrication. 2023; 15(3).
DOI: 10.1088/1758-5090/acc42c.
View
15.
Davidson M, Prendergast M, Ban E, Xu K, Mickel G, Mensah P
. Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Sci Adv. 2021; 7(46):eabi8157.
PMC: 8580309.
DOI: 10.1126/sciadv.abi8157.
View
16.
Rockwood D, Preda R, Yucel T, Wang X, Lovett M, Kaplan D
. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011; 6(10):1612-31.
PMC: 3808976.
DOI: 10.1038/nprot.2011.379.
View
17.
Nakayama K, Quarta M, Paine P, Alcazar C, Karakikes I, Garcia V
. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun Biol. 2019; 2:170.
PMC: 6505043.
DOI: 10.1038/s42003-019-0416-4.
View
18.
Hafeez S, Caiado Decarli M, Aldana A, Ebrahimi M, Ruiter F, Duimel H
. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. Adv Mater. 2023; 35(35):e2301242.
DOI: 10.1002/adma.202301242.
View
19.
Di Bella C, Duchi S, OConnell C, Blanchard R, Augustine C, Yue Z
. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med. 2017; 12(3):611-621.
DOI: 10.1002/term.2476.
View
20.
Hu J, Chen B, Guo F, Du J, Gu P, Lin X
. Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement. J Mater Sci Mater Med. 2012; 23(3):711-22.
DOI: 10.1007/s10856-011-4533-y.
View