6.
Spence E, Calvo-Bado L, Mines P, Bugg T
. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact. 2021; 20(1):15.
PMC: 7814577.
DOI: 10.1186/s12934-020-01504-z.
View
7.
Zhou H, Guo W, Xu B, Teng Z, Tao D, Lou Y
. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog. 2017; 112:63-69.
DOI: 10.1016/j.micpath.2017.09.047.
View
8.
Ma J, Zhang K, Liao H, Hector S, Shi X, Li J
. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels. 2016; 9:25.
PMC: 4736469.
DOI: 10.1186/s13068-016-0439-8.
View
9.
Xiong X, Liao H, Ma J, Liu X, Zhang L, Shi X
. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. 2013; 58(2):123-9.
DOI: 10.1111/lam.12163.
View
10.
Moraes E, Alvarez T, Persinoti G, Tomazetto G, Brenelli L, Paixao D
. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels. 2018; 11:75.
PMC: 5863372.
DOI: 10.1186/s13068-018-1073-4.
View
11.
Tuck C, Perez E, Horvath I, Sheldon R, Poliakoff M
. Valorization of biomass: deriving more value from waste. Science. 2012; 337(6095):695-9.
DOI: 10.1126/science.1218930.
View
12.
Eschrich K, van der Bolt F, de Kok A, van Berkel W
. Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1993; 216(1):137-46.
DOI: 10.1111/j.1432-1033.1993.tb18125.x.
View
13.
Fu B, Xiao G, Zhang Y, Yuan J
. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid. J Agric Food Chem. 2021; 69(38):11336-11341.
DOI: 10.1021/acs.jafc.1c03960.
View
14.
Chen Y, Chai L, Zhu Y, Yang Z, Zheng Y, Zhang H
. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol. 2012; 112(5):900-6.
DOI: 10.1111/j.1365-2672.2012.05275.x.
View
15.
Sana B, Chia K, Raghavan S, Ramalingam B, Nagarajan N, Seayad J
. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnol Biofuels. 2017; 10:32.
PMC: 5291986.
DOI: 10.1186/s13068-017-0720-5.
View
16.
Singhvi M, Kim B
. Lignin valorization using biological approach. Biotechnol Appl Biochem. 2020; 68(3):459-468.
DOI: 10.1002/bab.1995.
View
17.
Suzuki Y, Otsuka Y, Araki T, Kamimura N, Masai E, Nakamura M
. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour Technol. 2021; 337:125489.
DOI: 10.1016/j.biortech.2021.125489.
View
18.
Tian J, Pourcher A, Bouchez T, Gelhaye E, Peu P
. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol. 2014; 98(23):9527-44.
DOI: 10.1007/s00253-014-6142-4.
View
19.
Ni J, Wu Y, Tao F, Peng Y, Xu P
. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. J Am Chem Soc. 2018; 140(47):16001-16005.
DOI: 10.1021/jacs.8b08177.
View
20.
Sonoki T, Morooka M, Sakamoto K, Otsuka Y, Nakamura M, Jellison J
. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J Biotechnol. 2014; 192 Pt A:71-7.
DOI: 10.1016/j.jbiotec.2014.10.027.
View