6.
Rickert C, Wittmann B, Fromme R, Lieleg O
. Highly Transparent Covalent Mucin Coatings Improve the Wettability and Tribology of Hydrophobic Contact Lenses. ACS Appl Mater Interfaces. 2020; 12(25):28024-28033.
DOI: 10.1021/acsami.0c06847.
View
7.
Zhao X, Chen F, Li Y, Lu H, Zhang N, Ma M
. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat Commun. 2018; 9(1):3579.
PMC: 6123392.
DOI: 10.1038/s41467-018-05904-z.
View
8.
Choi H, Shin D, Yang J, Lee S, Figueiredo C, Sinopoli S
. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun. 2022; 13(1):814.
PMC: 8831553.
DOI: 10.1038/s41467-022-28459-6.
View
9.
Fan W, Liu T, Wu F, Wang S, Ge S, Li Y
. An Antisweat Interference and Highly Sensitive Temperature Sensor Based on Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Fiber Coated with Polyurethane/Graphene for Real-Time Monitoring of Body Temperature. ACS Nano. 2023; 17(21):21073-21082.
PMC: 10655239.
DOI: 10.1021/acsnano.3c04246.
View
10.
Zhu D, Liu B, Wei G
. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors (Basel). 2021; 11(8).
PMC: 8392748.
DOI: 10.3390/bios11080259.
View
11.
Yoo J, Oh S, Shalish W, Maeng W, Cerier E, Jeanne E
. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat Med. 2023; 29(12):3137-3148.
DOI: 10.1038/s41591-023-02637-5.
View
12.
Li J, Xia B, Xiao X, Huang Z, Yin J, Jiang Y
. Stretchable Thermoelectric Fibers with Three-Dimensional Interconnected Porous Network for Low-Grade Body Heat Energy Harvesting. ACS Nano. 2023; 17(19):19232-19241.
DOI: 10.1021/acsnano.3c05797.
View
13.
Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q
. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun. 2021; 12(1):4876.
PMC: 8361012.
DOI: 10.1038/s41467-021-25075-8.
View
14.
Zhang C, Hsieh M, Wu S, Li S, Wu J, Liu S
. A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials. 2019; 231:119672.
DOI: 10.1016/j.biomaterials.2019.119672.
View
15.
Gao Y, Yu L, Yeo J, Lim C
. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Adv Mater. 2019; 32(15):e1902133.
DOI: 10.1002/adma.201902133.
View
16.
Kim T, Hong S, Jeong S, Bae H, Cheong S, Choi H
. Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires. Adv Mater. 2023; 35(45):e2303401.
DOI: 10.1002/adma.202303401.
View
17.
Su X, Wang H, Tian Z, Duan X, Chai Z, Feng Y
. A Solvent Co-cross-linked Organogel with Fast Self-Healing Capability and Reversible Adhesiveness at Extreme Temperatures. ACS Appl Mater Interfaces. 2020; 12(26):29757-29766.
DOI: 10.1021/acsami.0c04933.
View
18.
Yan W, Noel G, Loke G, Meiklejohn E, Khudiyev T, Marion J
. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature. 2022; 603(7902):616-623.
DOI: 10.1038/s41586-022-04476-9.
View
19.
Hong S, Zhang H, Lee J, Yu T, Cho S, Park T
. Spongy Ag Foam for Soft and Stretchable Strain Gauges. ACS Appl Mater Interfaces. 2024; 16(20):26613-26623.
DOI: 10.1021/acsami.4c04719.
View
20.
Kim J, Campbell A, de Avila B, Wang J
. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019; 37(4):389-406.
PMC: 8183422.
DOI: 10.1038/s41587-019-0045-y.
View