6.
Azizi S, Culp L, Freyberg J, Mustafa B, Baur S, Kornblith S
. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat Biomed Eng. 2023; 7(6):756-779.
DOI: 10.1038/s41551-023-01049-7.
View
7.
Alexander N, Alexander D, Barkhof F, Denaxas S
. Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning. BMC Med Inform Decis Mak. 2021; 21(1):343.
PMC: 8653614.
DOI: 10.1186/s12911-021-01693-6.
View
8.
Peng H, Long F, Ding C
. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27(8):1226-38.
DOI: 10.1109/TPAMI.2005.159.
View
9.
Hermanns N, Kulzer B, Kubiak T, Krichbaum M, Haak T
. The effect of an education programme (HyPOS) to treat hypoglycaemia problems in patients with type 1 diabetes. Diabetes Metab Res Rev. 2007; 23(7):528-38.
DOI: 10.1002/dmrr.710.
View
10.
Skrivarhaug T, Bangstad H, Stene L, Sandvik L, Hanssen K, Joner G
. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia. 2005; 49(2):298-305.
DOI: 10.1007/s00125-005-0082-6.
View
11.
Ma S, Schreiner P, Seaquist E, Ugurbil M, Zmora R, Chow L
. Multiple predictively equivalent risk models for handling missing data at time of prediction: With an application in severe hypoglycemia risk prediction for type 2 diabetes. J Biomed Inform. 2020; 103:103379.
PMC: 7088462.
DOI: 10.1016/j.jbi.2020.103379.
View
12.
Nathan D, Genuth S, Lachin J, Cleary P, Crofford O, Davis M
. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14):977-86.
DOI: 10.1056/NEJM199309303291401.
View
13.
Nguyen B, Pham H, Tran H, Nghiem N, Nguyen Q, Do T
. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Comput Methods Programs Biomed. 2019; 182:105055.
DOI: 10.1016/j.cmpb.2019.105055.
View
14.
Gerstein H, Miller M, Genuth S, Ismail-Beigi F, Buse J, Goff Jr D
. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011; 364(9):818-28.
PMC: 4083508.
DOI: 10.1056/NEJMoa1006524.
View
15.
Puente E, Silverstein J, Bree A, Musikantow D, Wozniak D, Maloney S
. Recurrent moderate hypoglycemia ameliorates brain damage and cognitive dysfunction induced by severe hypoglycemia. Diabetes. 2010; 59(4):1055-62.
PMC: 2844814.
DOI: 10.2337/db09-1495.
View
16.
Rahmatinejad Z, Dehghani T, Hoseini B, Rahmatinejad F, Lotfata A, Reihani H
. A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department. Sci Rep. 2024; 14(1):3406.
PMC: 10858239.
DOI: 10.1038/s41598-024-54038-4.
View
17.
Shi M, Yang A, Lau E, Luk A, Ma R, Kong A
. A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study. PLoS Med. 2024; 21(4):e1004369.
PMC: 11014435.
DOI: 10.1371/journal.pmed.1004369.
View
18.
Ram Y, Xu Y, Cheng A, Dunn T, Ajjan R
. Variation in the relationship between fasting glucose and HbA1c: implications for the diagnosis of diabetes in different age and ethnic groups. BMJ Open Diabetes Res Care. 2024; 12(2).
PMC: 11146409.
DOI: 10.1136/bmjdrc-2023-003470.
View
19.
Anderson J, Parikh J, Shenfeld D, Ivanov V, Marks C, Church B
. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records. J Diabetes Sci Technol. 2015; 10(1):6-18.
PMC: 4738229.
DOI: 10.1177/1932296815620200.
View
20.
Tanenberg R, Newton C, Drake A
. Confirmation of hypoglycemia in the "dead-in-bed" syndrome, as captured by a retrospective continuous glucose monitoring system. Endocr Pract. 2009; 16(2):244-8.
DOI: 10.4158/EP09260.CR.
View