6.
Zhou H, Yi X, Hui Y, Wang L, Chen W, Qin Y
. Isolated boron in zeolite for oxidative dehydrogenation of propane. Science. 2021; 372(6537):76-80.
DOI: 10.1126/science.abe7935.
View
7.
Gao X, Zhu L, Yang F, Zhang L, Xu W, Zhou X
. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat Commun. 2023; 14(1):1478.
PMC: 10023692.
DOI: 10.1038/s41467-023-37261-x.
View
8.
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y
. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev. 2021; 50(5):3315-3354.
DOI: 10.1039/d0cs00814a.
View
9.
Gomez E, Kattel S, Yan B, Yao S, Liu P, Chen J
. Combining CO reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat Commun. 2018; 9(1):1398.
PMC: 5893610.
DOI: 10.1038/s41467-018-03793-w.
View
10.
Liew F, Nogle R, Abdalla T, Rasor B, Canter C, Jensen R
. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol. 2022; 40(3):335-344.
DOI: 10.1038/s41587-021-01195-w.
View
11.
Ravel B, Newville M
. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005; 12(Pt 4):537-41.
DOI: 10.1107/S0909049505012719.
View
12.
Wang W, Chen S, Pei C, Luo R, Sun J, Song H
. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis. Science. 2023; 381(6660):886-890.
DOI: 10.1126/science.adi3416.
View
13.
Beletskaya I, Nenajdenko V
. Towards the 150th Anniversary of the Markovnikov Rule. Angew Chem Int Ed Engl. 2018; 58(15):4778-4789.
DOI: 10.1002/anie.201810035.
View
14.
Grant J, Carrero C, Goeltl F, Venegas J, Mueller P, Burt S
. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science. 2016; 354(6319):1570-1573.
DOI: 10.1126/science.aaf7885.
View
15.
Groppo E, Rojas-Buzo S, Bordiga S
. The Role of / IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev. 2023; 123(21):12135-12169.
PMC: 10636737.
DOI: 10.1021/acs.chemrev.3c00372.
View
16.
Guo M, Ma P, Wang J, Xu H, Zheng K, Cheng D
. Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew Chem Int Ed Engl. 2022; 61(27):e202203827.
DOI: 10.1002/anie.202203827.
View
17.
Nakaya Y, Hirayama J, Yamazoe S, Shimizu K, Furukawa S
. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat Commun. 2020; 11(1):2838.
PMC: 7275083.
DOI: 10.1038/s41467-020-16693-9.
View
18.
Luo L, Chen W, Xu S, Yang J, Li M, Zhou H
. Selective Photoelectrocatalytic Glycerol Oxidation to Dihydroxyacetone via Enhanced Middle Hydroxyl Adsorption over a BiO-Incorporated Catalyst. J Am Chem Soc. 2022; 144(17):7720-7730.
DOI: 10.1021/jacs.2c00465.
View
19.
Hashiguchi B, Konnick M, Bischof S, Gustafson S, Devarajan D, Gunsalus N
. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters. Science. 2014; 343(6176):1232-7.
DOI: 10.1126/science.1249357.
View
20.
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z
. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev. 2019; 119(7):4471-4568.
DOI: 10.1021/acs.chemrev.8b00408.
View