» Articles » PMID: 39347001

PC12 Differentiation to Neuron Cells Activated by a Low-level Laser at 660 nm on UV Pre-treated CR-39 Scaffolds with Parallel Microchannels

Overview
Specialty Radiology
Date 2024 Sep 30
PMID 39347001
Authors
Affiliations
Soon will be listed here.
Abstract

The lack of regeneration of injured neurons in the central and peripheral neural system leads to the failure of damaged tissue repair in patients. While there is no definitive cure for most neurodegenerative diseases, new therapeutic methods that cause the proliferation and differentiation of neurons are of interest. Challenges such as the inability of neuronal cells to proliferate after injury, the lack of a stimulus for initial stimulation, and the presence of the microenvironment around CNS neurons contain several inhibitory factors that prevent neuron regeneration, thus, creating a structure similar to the extracellular matrix helps the cell proliferation in current treatment. A rapid method of neuron-like cell differentiation of PC12 cells is introduced here based on a novel synthetic scaffold. Initially, poly allyldiglycol carbonate (CR-39) substrate is textured under a high dose of ArF UV excimer laser (1000 shot, 300 mJ/pulse equivalent to 300 J/cm at 193 nm) to create superficial periodic parallel microchannels with the micrometer spacing and sub-micron width. Ultraviolet treated CR-39 (UT CR-39) provides a suitable scaffold to speed up the transformation/differentiation of PC12 cells. The latter is pheochromocytoma of the rat adrenal medulla as an embryonic origin from the neural crest usually exposed to the nerve growth factor (NGF). In fact, PC12 cells are seeded on the microchannels and simultaneously are stimulated by coherent red photons at 660 nm within the therapeutic window. The UT CR-39 scaffold undergoes extra improvement of ∼ 30% after 12 minutes of laser activation regarding the photo-biomodulation (PBM) mechanism. The cell activation due to the coherent photons also gives rise to enhanced proliferation/differentiation. Here, PC12 cells are efficiently differentiated into neurons according to immunocytochemistry (ICC) and Western Blot verification tests based on MAP2 and synapsin-1 protein expression. In general, UT CR-39 acts as a superior bed to elevate the population of neuron-like cells up to threefold against those of untreated (control)ones. We conclude that the surface cross-linking due to UV exposure and subsequent induced hydrophilicity notably contribute to the neuron-like cell differentiation of PC12 without adding NGF.

References
1.
Hsiao Y, Lin C, Hsieh H, Tsai S, Kuo C, Chu C . Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays. Lab Chip. 2011; 11(21):3674-80. DOI: 10.1039/c1lc20675c. View

2.
Boni R, Ali A, Shavandi A, Clarkson A . Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018; 25(1):90. PMC: 6300901. DOI: 10.1186/s12929-018-0491-8. View

3.
Motlagh N, Parvin P, Mirzaie Z, Karimi R, Sanderson J, Atyabi F . Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomed Opt Express. 2020; 11(7):3783-3794. PMC: 7510931. DOI: 10.1364/BOE.389261. View

4.
Oh J, Recknor J, Recknor J, Mallapragada S, Sakaguchi D . Soluble factors from neocortical astrocytes enhance neuronal differentiation of neural progenitor cells from adult rat hippocampus on micropatterned polymer substrates. J Biomed Mater Res A. 2008; 91(2):575-85. PMC: 2749893. DOI: 10.1002/jbm.a.32242. View

5.
Lizarraga-Valderrama L, Nigmatullin R, Ladino B, Taylor C, Boccaccini A, Knowles J . Modulation of neuronal cell affinity of composite scaffolds based on polyhydroxyalkanoates and bioactive glasses. Biomed Mater. 2020; 15(4):045024. DOI: 10.1088/1748-605X/ab797b. View