6.
Stone B, Dijkstra P, Finley B, Fitzpatrick R, Foley M, Hayer M
. Life history strategies among soil bacteria-dichotomy for few, continuum for many. ISME J. 2023; 17(4):611-619.
PMC: 10030646.
DOI: 10.1038/s41396-022-01354-0.
View
7.
Kaspari M, Bujan J, Weiser M, Ning D, Michaletz S, Zhili H
. Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology. 2017; 98(8):2019-2028.
DOI: 10.1002/ecy.1895.
View
8.
Chen Q, Yuan Y, Hu Y, Wang J, Si G, Xu R
. Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe. Sci Total Environ. 2020; 764:142848.
DOI: 10.1016/j.scitotenv.2020.142848.
View
9.
Wallenstein M, Myrold D, Firestone M, Voytek M
. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl. 2007; 16(6):2143-52.
DOI: 10.1890/1051-0761(2006)016[2143:ecodca]2.0.co;2.
View
10.
Blanchet F, Legendre P, Borcard D
. Forward selection of explanatory variables. Ecology. 2008; 89(9):2623-32.
DOI: 10.1890/07-0986.1.
View
11.
Morrissey E, Franklin R
. Resource effects on denitrification are mediated by community composition in tidal freshwater wetlands soils. Environ Microbiol. 2014; 17(5):1520-32.
DOI: 10.1111/1462-2920.12575.
View
12.
Xiao J, Dong S, Shen H, Li S, Wessell K, Liu S
. N Addition Overwhelmed the Effects of P Addition on the Soil C, N, and P Cycling Genes in Alpine Meadow of the Qinghai-Tibetan Plateau. Front Plant Sci. 2022; 13:860590.
PMC: 9087854.
DOI: 10.3389/fpls.2022.860590.
View
13.
Fierer N, Leff J, Adams B, Nielsen U, Bates S, Lauber C
. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2012; 109(52):21390-5.
PMC: 3535587.
DOI: 10.1073/pnas.1215210110.
View
14.
Leff J, Jones S, Prober S, Barberan A, Borer E, Firn J
. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A. 2015; 112(35):10967-72.
PMC: 4568213.
DOI: 10.1073/pnas.1508382112.
View
15.
Ho A, Di Lonardo D, Bodelier P
. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017; 93(3).
DOI: 10.1093/femsec/fix006.
View
16.
Jiang Y, Yang X, Ni K, Ma L, Shi Y, Wang Y
. Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation. J Environ Manage. 2023; 342:118207.
DOI: 10.1016/j.jenvman.2023.118207.
View
17.
Dai Z, Su W, Chen H, Barberan A, Zhao H, Yu M
. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob Chang Biol. 2018; 24(8):3452-3461.
DOI: 10.1111/gcb.14163.
View
18.
Bouwman L, Goldewijk K, Van Der Hoek K, Beusen A, Van Vuuren D, Willems J
. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc Natl Acad Sci U S A. 2011; 110(52):20882-7.
PMC: 3876211.
DOI: 10.1073/pnas.1012878108.
View
19.
Sun M, Li M, Zhou Y, Liu J, Shi W, Wu X
. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. Sci Total Environ. 2022; 856(Pt 1):158939.
DOI: 10.1016/j.scitotenv.2022.158939.
View
20.
Zhou Z, Wang C, Luo Y
. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun. 2020; 11(1):3072.
PMC: 7300008.
DOI: 10.1038/s41467-020-16881-7.
View