6.
Wang D, Pajerowska-Mukhtar K, Culler A, Dong X
. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007; 17(20):1784-90.
DOI: 10.1016/j.cub.2007.09.025.
View
7.
Zha W, Li C, Wu Y, Chen J, Li S, Sun M
. Single-Cell RNA sequencing of leaf sheath cells reveals the mechanism of rice resistance to brown planthopper (). Front Plant Sci. 2023; 14:1200014.
PMC: 10316026.
DOI: 10.3389/fpls.2023.1200014.
View
8.
Xue J, Bao Y, Li B, Cheng Y, Peng Z, Liu H
. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One. 2010; 5(12):e14233.
PMC: 2997790.
DOI: 10.1371/journal.pone.0014233.
View
9.
Guo J, Qi J, He K, Wu J, Bai S, Zhang T
. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Plant Biotechnol J. 2018; 17(1):88-102.
PMC: 6330542.
DOI: 10.1111/pbi.12949.
View
10.
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z
. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci U S A. 2019; 117(1):271-277.
PMC: 6955232.
DOI: 10.1073/pnas.1902771116.
View
11.
Perraki A, Gronnier J, Gouguet P, Boudsocq M, Deroubaix A, Simon V
. REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog. 2018; 14(11):e1007378.
PMC: 6258466.
DOI: 10.1371/journal.ppat.1007378.
View
12.
Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X
. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J. 2011; 68(4):583-96.
DOI: 10.1111/j.1365-313X.2011.04709.x.
View
13.
Liu J, Du H, Ding X, Zhou Y, Xie P, Wu J
. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Manag Sci. 2017; 73(12):2559-2568.
DOI: 10.1002/ps.4655.
View
14.
Conesa A, Nueda M, Ferrer A, Talon M
. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006; 22(9):1096-102.
DOI: 10.1093/bioinformatics/btl056.
View
15.
Jing S, Zhao Y, Du B, Chen R, Zhu L, He G
. Genomics of interaction between the brown planthopper and rice. Curr Opin Insect Sci. 2017; 19:82-87.
DOI: 10.1016/j.cois.2017.03.005.
View
16.
Zhang Q, Li T, Gao M, Ye M, Lin M, Wu D
. Transcriptome and Metabolome Profiling Reveal the Resistance Mechanisms of Rice against Brown Planthopper. Int J Mol Sci. 2022; 23(8).
PMC: 9031479.
DOI: 10.3390/ijms23084083.
View
17.
Satturu V, Kudapa H, Muthuramalingam P, Nadimpalli R, Vattikuti J, Anjali C
. RNA-Seq based global transcriptome analysis of rice unravels the key players associated with brown planthopper resistance. Int J Biol Macromol. 2021; 191:118-128.
DOI: 10.1016/j.ijbiomac.2021.09.058.
View
18.
Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z
. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci U S A. 2009; 106(52):22163-8.
PMC: 2793316.
DOI: 10.1073/pnas.0912139106.
View
19.
Songkro S, Jenboonlap M, Boonprasertpon M, Maneenuan D, Bouking K, Kaewnopparat N
. Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. J Med Entomol. 2012; 49(3):672-7.
DOI: 10.1603/me11141.
View
20.
Chen C, Chen H, Zhang Y, Thomas H, Frank M, He Y
. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020; 13(8):1194-1202.
DOI: 10.1016/j.molp.2020.06.009.
View