6.
Gabrielaite M, Torp M, Rasmussen M, Andreu-Sanchez S, Vieira F, Pedersen C
. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers (Basel). 2021; 13(24).
PMC: 8699073.
DOI: 10.3390/cancers13246283.
View
7.
Boarini M, Tremosini M, Di Cecco A, Gnoli M, Brizola E, Mordenti M
. Health-related quality of life and associated risk factors in patients with Multiple Osteochondromas: a cross-sectional study. Qual Life Res. 2024; 33(5):1323-1334.
PMC: 11045590.
DOI: 10.1007/s11136-024-03604-4.
View
8.
Bovee J
. Multiple osteochondromas. Orphanet J Rare Dis. 2008; 3:3.
PMC: 2276198.
DOI: 10.1186/1750-1172-3-3.
View
9.
Wuyts W, Van Hul W
. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat. 2000; 15(3):220-7.
DOI: 10.1002/(SICI)1098-1004(200003)15:3<220::AID-HUMU2>3.0.CO;2-K.
View
10.
Pedrini E, Jennes I, Tremosini M, Milanesi A, Mordenti M, Parra A
. Genotype-phenotype correlation study in 529 patients with multiple hereditary exostoses: identification of "protective" and "risk" factors. J Bone Joint Surg Am. 2012; 93(24):2294-302.
DOI: 10.2106/JBJS.J.00949.
View
11.
Sarrion P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Martorell L
. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep. 2013; 3:1346.
PMC: 3581825.
DOI: 10.1038/srep01346.
View
12.
Porter D, Lonie L, Fraser M, Dobson-Stone C, Porter J, Monaco A
. Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study. J Bone Joint Surg Br. 2004; 86(7):1041-6.
DOI: 10.1302/0301-620x.86b7.14815.
View
13.
Schmale G, Conrad 3rd E, Raskind W
. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994; 76(7):986-92.
DOI: 10.2106/00004623-199407000-00005.
View
14.
Rooney Riggs E, Andersen E, Cherry A, Kantarci S, Kearney H, Patel A
. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2019; 22(2):245-257.
PMC: 7313390.
DOI: 10.1038/s41436-019-0686-8.
View
15.
Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans J, Pacifici M
. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn. 2013; 242(9):1021-32.
PMC: 4007065.
DOI: 10.1002/dvdy.24010.
View
16.
Wu Y, Heutink P, de Vries B, Sandkuijl L, van den Ouweland A, Niermeijer M
. Assignment of a second locus for multiple exostoses to the pericentromeric region of chromosome 11. Hum Mol Genet. 1994; 3(1):167-71.
DOI: 10.1093/hmg/3.1.167.
View
17.
McCormick C, Duncan G, Goutsos K, Tufaro F
. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A. 2000; 97(2):668-73.
PMC: 15388.
DOI: 10.1073/pnas.97.2.668.
View
18.
Bukowska-Olech E, Trzebiatowska W, Czech W, Drzymala O, Frak P, Klarowski F
. Hereditary Multiple Exostoses-A Review of the Molecular Background, Diagnostics, and Potential Therapeutic Strategies. Front Genet. 2021; 12:759129.
PMC: 8704583.
DOI: 10.3389/fgene.2021.759129.
View
19.
Mordenti M, Gnoli M, Boarini M, Trisolino G, Evangelista A, Pedrini E
. The Rizzoli Multiple Osteochondromas Classification revised: describing the phenotype to improve clinical practice. Am J Med Genet A. 2021; 185(11):3466-3475.
PMC: 9293117.
DOI: 10.1002/ajmg.a.62470.
View