6.
Peterson E, Debela T, Gomoro G, Neaton J, Asres G
. Electronic structure of strain-tunable Janus WSSe-ZnO heterostructures from first-principles. RSC Adv. 2022; 12(48):31303-31316.
PMC: 9623559.
DOI: 10.1039/d2ra05533c.
View
7.
Wang X, Liu H, Wu J, Lin J, He W, Wang H
. Chemical Growth of 1T-TaS Monolayer and Thin Films: Robust Charge Density Wave Transitions and High Bolometric Responsivity. Adv Mater. 2018; 30(38):e1800074.
DOI: 10.1002/adma.201800074.
View
8.
Ma L, Ye C, Yu Y, Lu X, Niu X, Kim S
. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat Commun. 2016; 7:10956.
PMC: 4792954.
DOI: 10.1038/ncomms10956.
View
9.
Li L, OFarrell E, Loh K, Eda G, Ozyilmaz B, Neto A
. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature. 2015; 529(7585):185-9.
DOI: 10.1038/nature16175.
View
10.
Lee H, Im H, Choi B, Park K, Chen Y, Ruan W
. Controlling structure and interfacial interaction of monolayer TaSe on bilayer graphene. Nano Converg. 2024; 11(1):14.
PMC: 11018566.
DOI: 10.1186/s40580-024-00422-9.
View
11.
Shi W, Wang Z
. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides. J Phys Condens Matter. 2018; 30(21):215301.
DOI: 10.1088/1361-648X/aabd59.
View
12.
Sayyad M, Kopaczek J, Gilardoni C, Chen W, Xiong Y, Yang S
. The Defects Genome of Janus Transition Metal Dichalcogenides. Adv Mater. 2024; 36(30):e2403583.
DOI: 10.1002/adma.202403583.
View
13.
Lin Y, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A
. Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures. ACS Nano. 2020; 14(4):3896-3906.
DOI: 10.1021/acsnano.9b10196.
View
14.
Domaretskiy D, Philippi M, Gibertini M, Ubrig N, Gutierrez-Lezama I, Morpurgo A
. Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field. Nat Nanotechnol. 2022; 17(10):1078-1083.
DOI: 10.1038/s41565-022-01183-4.
View
15.
Chi Z, Lee S, Yang H, Dolan E, Safeer C, Ingla-Aynes J
. Control of Charge-Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves. Adv Mater. 2024; 36(18):e2310768.
DOI: 10.1002/adma.202310768.
View
16.
Trivedi D, Turgut G, Qin Y, Sayyad M, Hajra D, Howell M
. Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Adv Mater. 2020; 32(50):e2006320.
DOI: 10.1002/adma.202006320.
View
17.
Ghobadi N, Babaee Touski S
. The electrical and spin properties of monolayer and bilayer Janus HfSSe under vertical electrical field. J Phys Condens Matter. 2020; 33(8):085502.
DOI: 10.1088/1361-648X/abcb12.
View
18.
Methfessel , Paxton
. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B Condens Matter. 1989; 40(6):3616-3621.
DOI: 10.1103/physrevb.40.3616.
View
19.
Li F, Wei W, Zhao P, Huang B, Dai Y
. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe. J Phys Chem Lett. 2017; 8(23):5959-5965.
DOI: 10.1021/acs.jpclett.7b02841.
View
20.
Kamil E, Berges J, Schonhoff G, Rosner M, Schuler M, Sangiovanni G
. Electronic structure of single layer 1T-NbSe: interplay of lattice distortions, non-local exchange, and Mott-Hubbard correlations. J Phys Condens Matter. 2018; 30(32):325601.
DOI: 10.1088/1361-648X/aad215.
View