6.
Huang Y, Yang N, Teng D, Mao R, Hao Y, Ma X
. Antibacterial peptide NZ2114-loaded hydrogel accelerates Staphylococcus aureus-infected wound healing. Appl Microbiol Biotechnol. 2022; 106(9-10):3639-3656.
DOI: 10.1007/s00253-022-11943-w.
View
7.
Seo J, Shin S, Lee M, Cha J, Min K, Lee S
. Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohydr Polym. 2020; 251:117036.
DOI: 10.1016/j.carbpol.2020.117036.
View
8.
Yuan N, Xu L, Xu B, Zhao J, Rong J
. Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions. Carbohydr Polym. 2018; 193:259-267.
DOI: 10.1016/j.carbpol.2018.03.071.
View
9.
Cui Z, Milani A, Greensmith P, Yan J, Adlam D, Hoyland J
. A study of physical and covalent hydrogels containing pH-responsive microgel particles and graphene oxide. Langmuir. 2014; 30(44):13384-93.
DOI: 10.1021/la5032015.
View
10.
Xiong Y, Hady W, Deslandes A, Rey A, Fraisse L, Kristensen H
. Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011; 55(11):5325-30.
PMC: 3195053.
DOI: 10.1128/AAC.00453-11.
View
11.
Xiong T, Li X, Zhou Y, Song Q, Zhang R, Lei L
. Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation. Acta Biomater. 2018; 73:275-284.
DOI: 10.1016/j.actbio.2018.04.019.
View
12.
Ramachandran S, Chen S, Etzler F
. Rheological characterization of hydroxypropylcellulose gels. Drug Dev Ind Pharm. 1999; 25(2):153-61.
DOI: 10.1081/ddc-100102155.
View
13.
Yang Y, Zhang C, Bian X, Ren L, Ma C, Xu Y
. Characterization of structural and functional properties of soy protein isolate and sodium alginate interpenetrating polymer network hydrogels. J Sci Food Agric. 2023; 103(13):6566-6573.
DOI: 10.1002/jsfa.12736.
View
14.
Wiegand I, Hilpert K, Hancock R
. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2):163-75.
DOI: 10.1038/nprot.2007.521.
View
15.
Yang C, Xue R, Zhang Q, Yang S, Liu P, Chen L
. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. Mater Sci Eng C Mater Biol Appl. 2017; 81:303-313.
DOI: 10.1016/j.msec.2017.08.008.
View
16.
Antoshin A, Shpichka A, Huang G, Chen K, Lu P, Svistunov A
. Lactoferrin as a regenerative agent: The old-new panacea?. Pharmacol Res. 2021; 167:105564.
DOI: 10.1016/j.phrs.2021.105564.
View
17.
Li Z, Fan Z, Xu Y, Lo W, Wang X, Niu H
. pH-Sensitive and Thermosensitive Hydrogels as Stem-Cell Carriers for Cardiac Therapy. ACS Appl Mater Interfaces. 2016; 8(17):10752-60.
PMC: 6410353.
DOI: 10.1021/acsami.6b01374.
View
18.
MARTIN P, Nunan R
. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015; 173(2):370-8.
PMC: 4671308.
DOI: 10.1111/bjd.13954.
View
19.
Legrand D
. Overview of Lactoferrin as a Natural Immune Modulator. J Pediatr. 2016; 173 Suppl:S10-5.
DOI: 10.1016/j.jpeds.2016.02.071.
View
20.
Mathew A, Uthaman S, Cho K, Cho C, Park I
. Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol. 2017; 110:17-29.
DOI: 10.1016/j.ijbiomac.2017.11.113.
View