6.
Kim M, Kim S, Ryu N, Ma J, Kim Y, Jung J
. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics. 2019; 9(24):7184-7199.
PMC: 6831294.
DOI: 10.7150/thno.38032.
View
7.
Hilgert N, Smith R, Van Camp G
. Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics?. Mutat Res. 2008; 681(2-3):189-196.
PMC: 2847850.
DOI: 10.1016/j.mrrev.2008.08.002.
View
8.
Krawczak M, Thomas N, Hundrieser B, Mort M, Wittig M, Hampe J
. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2006; 28(2):150-8.
DOI: 10.1002/humu.20400.
View
9.
Dai X, Li J, Hu X, Ye J, Cai W
. SLC26A4 Mutation Promotes Cell Apoptosis by Inducing Pendrin Transfer, Reducing Cl Transport, and Inhibiting PI3K/Akt/mTOR Pathway. Biomed Res Int. 2022; 2022:6496799.
PMC: 9444440.
DOI: 10.1155/2022/6496799.
View
10.
Alper S, Sharma A
. The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 2013; 34(2-3):494-515.
PMC: 3602804.
DOI: 10.1016/j.mam.2012.07.009.
View
11.
Klarov L, Pshennikova V, Romanov G, Cherdonova A, Solovyev A, Teryutin F
. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. Int J Mol Sci. 2022; 23(23).
PMC: 9740095.
DOI: 10.3390/ijms232315372.
View
12.
Honda K, Griffith A
. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet. 2021; 141(3-4):455-464.
DOI: 10.1007/s00439-021-02311-1.
View
13.
Al-Ani R
. Various aspects of hearing loss in newborns: A narrative review. World J Clin Pediatr. 2023; 12(3):86-96.
PMC: 10278076.
DOI: 10.5409/wjcp.v12.i3.86.
View
14.
Ito T, Choi B, King K, Zalewski C, Muskett J, Chattaraj P
. SLC26A4 genotypes and phenotypes associated with enlargement of the vestibular aqueduct. Cell Physiol Biochem. 2011; 28(3):545-52.
PMC: 3709178.
DOI: 10.1159/000335119.
View
15.
Mey K, Muhamad A, Tranebjaerg L, Rendtorff N, Rasmussen S, Bille M
. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope. 2019; 129(11):2574-2579.
DOI: 10.1002/lary.27319.
View
16.
Sakuma N, Moteki H, Takahashi M, Nishio S, Arai Y, Yamashita Y
. An effective screening strategy for deafness in combination with a next-generation sequencing platform: a consecutive analysis. J Hum Genet. 2016; 61(3):253-61.
PMC: 4819760.
DOI: 10.1038/jhg.2015.143.
View
17.
Landa P, Differ A, Rajput K, Jenkins L, Bitner-Glindzicz M
. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet. 2013; 14:85.
PMC: 3765178.
DOI: 10.1186/1471-2350-14-85.
View
18.
Wu T, Cui L, Mou Y, Guo W, Liu D, Qiu J
. A newly identified mutation (c.2029 C > T) in SLC26A4 gene is associated with enlarged vestibular aqueducts in a Chinese family. BMC Med Genomics. 2022; 15(1):49.
PMC: 8898487.
DOI: 10.1186/s12920-022-01200-4.
View
19.
Miyagawa M, Nishio S, Usami S
. Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. J Hum Genet. 2014; 59(5):262-8.
PMC: 4521295.
DOI: 10.1038/jhg.2014.12.
View
20.
Liu Y, Wang L, Feng Y, He C, Liu D, Cai X
. A New Genetic Diagnostic for Enlarged Vestibular Aqueduct Based on Next-Generation Sequencing. PLoS One. 2016; 11(12):e0168508.
PMC: 5173027.
DOI: 10.1371/journal.pone.0168508.
View