Spatially Separate Center-to-Surround Radiation Structure Induced Tandem Electron Transfer Effect for Stable and Enhanced Photocatalysis
Overview
Authors
Affiliations
Spatially separate anchoring redox cocatalysts on the photocatalyst to shunt the charge migration paths is an effective route to regulate the charge flow. Differently, we herein introduce an artificially synthesized Sun-planet-like spatially separated center-to-surround radiation photosensitizer-cocatalyst structure to regulate electron flow in a tandem manner. A single Au sphere acts as the Sun/photosensitizer in the center, and small Pt particles scatter around as the planets/cocatalyst, both of which are fixed inside the MOF crystal. Such a structure can not only simultaneously increase the light harvesting capacity and electron migration kinetics but also optimize the electron transfer pathway to minimize the electron migration distance, so that the hot electrons generated by Au can be quickly transferred to Pt through MOF before annihilation, leading to a significant photoactivity promotion.