6.
Nakano M, Hanashima S, Hara T, Kabayama K, Asahina Y, Hojo H
. FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers. Biochim Biophys Acta Biomembr. 2021; 1863(8):183623.
DOI: 10.1016/j.bbamem.2021.183623.
View
7.
Reynisson J, Jaiswal J, Barker D, DMello S, Denny W, Baguley B
. Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno[2,3-b]pyridine derivative. Cancer Cell Int. 2016; 16:18.
PMC: 4785615.
DOI: 10.1186/s12935-016-0293-6.
View
8.
Jennemann R, Volz M, Bestvater F, Schmidt C, Richter K, Kaden S
. Blockade of Glycosphingolipid Synthesis Inhibits Cell Cycle and Spheroid Growth of Colon Cancer Cells In Vitro and Experimental Colon Cancer Incidence In Vivo. Int J Mol Sci. 2021; 22(19).
PMC: 8508865.
DOI: 10.3390/ijms221910539.
View
9.
Maeda R, Sato T, Okamoto K, Yanagawa M, Sako Y
. Lipid-Protein Interplay in Dimerization of Juxtamembrane Domains of Epidermal Growth Factor Receptor. Biophys J. 2018; 114(4):893-903.
PMC: 5984969.
DOI: 10.1016/j.bpj.2017.12.029.
View
10.
Mozzi A, Forcella M, Riva A, Difrancesco C, Molinari F, Martin V
. NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology. 2015; 25(8):855-68.
DOI: 10.1093/glycob/cwv026.
View
11.
Laplante M, Sabatini D
. mTOR signaling in growth control and disease. Cell. 2012; 149(2):274-93.
PMC: 3331679.
DOI: 10.1016/j.cell.2012.03.017.
View
12.
Seif S, Mahmoud Z, Wardakhan W, Abdou A, Hassan R
. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res. 2023; 84(5):839-860.
DOI: 10.1002/ddr.22058.
View
13.
Haverkate N, van Rensburg M, Kumara S, Reynisson J, Leung E, Pilkington L
. Improving the solubility of anti-proliferative thieno[2,3-b]quinoline-2-carboxamides. Bioorg Med Chem. 2021; 37:116092.
DOI: 10.1016/j.bmc.2021.116092.
View
14.
Liang Y, Wang C, Wang I, Chen Y, Li L, Lin C
. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget. 2017; 8(29):47454-47473.
PMC: 5564578.
DOI: 10.18632/oncotarget.17665.
View
15.
Battula V, Shi Y, Evans K, Wang R, Spaeth E, Jacamo R
. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012; 122(6):2066-78.
PMC: 3591166.
DOI: 10.1172/JCI59735.
View
16.
Gomes L, Sorgine M, Passos C, Ferreira C, de Andrade I, Silva J
. Increase in fatty acids and flotillins upon resveratrol treatment of human breast cancer cells. Sci Rep. 2019; 9(1):13960.
PMC: 6764983.
DOI: 10.1038/s41598-019-50416-5.
View
17.
Arteaga C
. ERBB receptors in cancer: signaling from the inside. Breast Cancer Res. 2011; 13(2):304.
PMC: 3219176.
DOI: 10.1186/bcr2829.
View
18.
Stathem M, Marimuthu S, ONeal J, Rathmell J, Chesney J, Beverly L
. Glucose availability and glycolytic metabolism dictate glycosphingolipid levels. J Cell Biochem. 2014; 116(1):67-80.
PMC: 4229434.
DOI: 10.1002/jcb.24943.
View
19.
Drago J, Ferraro E, Abuhadra N, Modi S
. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev. 2022; 109:102436.
PMC: 10478787.
DOI: 10.1016/j.ctrv.2022.102436.
View
20.
Sonnino S, Chigorno V
. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta. 2000; 1469(2):63-77.
DOI: 10.1016/s0005-2736(00)00210-8.
View