6.
Nicolaou K, Cai Q, Qin B, Petersen M, Mikkelsen R, Heretsch P
. Total synthesis of trioxacarcin DC-45-A2. Angew Chem Int Ed Engl. 2015; 54(10):3074-8.
DOI: 10.1002/anie.201410369.
View
7.
Fitzner A, Frauendorf H, Laatsch H, Diederichsen U
. Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. Anal Bioanal Chem. 2008; 390(4):1139-47.
PMC: 2228378.
DOI: 10.1007/s00216-007-1737-6.
View
8.
Shen Y, Nie Q, Yin Y, Pan H, Xu B, Tang G
. Production of a trioxacarcin analog by introducing a C-3 dehydratase into deoxysugar biosynthesis. Acta Biochim Biophys Sin (Shanghai). 2019; 51(5):539-541.
DOI: 10.1093/abbs/gmz024.
View
9.
Propper K, Dittrich B, Smaltz D, Magauer T, Myers A
. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A. Bioorg Med Chem Lett. 2014; 24(18):4410-4413.
DOI: 10.1016/j.bmcl.2014.08.016.
View
10.
Garabet A, Liu L, Chalikian T
. Heat capacity changes associated with G-quadruplex unfolding. J Chem Phys. 2023; 159(5).
DOI: 10.1063/5.0157749.
View
11.
Svenda J, Hill N, Myers A
. A multiply convergent platform for the synthesis of trioxacarcins. Proc Natl Acad Sci U S A. 2011; 108(17):6709-14.
PMC: 3084144.
DOI: 10.1073/pnas.1015257108.
View
12.
Nicolaou K, Chen P, Zhu S, Cai Q, Erande R, Li R
. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues. J Am Chem Soc. 2017; 139(43):15467-15478.
DOI: 10.1021/jacs.7b08820.
View
13.
Dong L, Shen Y, Hou X, Li W, Tang G
. Discovery of Druggability-Improved Analogues by Investigation of the LL-D49194α1 Biosynthetic Pathway. Org Lett. 2019; 21(7):2322-2325.
DOI: 10.1021/acs.orglett.9b00610.
View
14.
Magauer T, Smaltz D, Myers A
. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues. Nat Chem. 2013; 5(10):886-93.
PMC: 4164168.
DOI: 10.1038/nchem.1746.
View
15.
Hou X, Song Y, Zhang M, Lan W, Meng S, Wang C
. Enzymology of Anthraquinone-γ-Pyrone Ring Formation in Complex Aromatic Polyketide Biosynthesis. Angew Chem Int Ed Engl. 2018; 57(41):13475-13479.
DOI: 10.1002/anie.201806729.
View
16.
Pfoh R, Laatsch H, Sheldrick G
. Crystal structure of trioxacarcin A covalently bound to DNA. Nucleic Acids Res. 2008; 36(10):3508-14.
PMC: 2425490.
DOI: 10.1093/nar/gkn245.
View
17.
Wu J, Ling X, Pan D, Apontes P, Song L, Liang P
. Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin: evidence of survivin down-regulation associated with drug sensitivity. J Biol Chem. 2005; 280(10):9745-51.
PMC: 2826138.
DOI: 10.1074/jbc.M409350200.
View
18.
Maskey R, Helmke E, Kayser O, Fiebig H, Maier A, Busche A
. Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo). 2005; 57(12):771-9.
DOI: 10.7164/antibiotics.57.771.
View
19.
Tomita F, Tamaoki T, Morimoto M, Fujimoto K
. Trioxacarcins, novel antitumor antibiotics. I. Producing organism, fermentation and biological activities. J Antibiot (Tokyo). 1981; 34(12):1519-24.
DOI: 10.7164/antibiotics.34.1519.
View
20.
Yin S, Lan W, Hou X, Liu Z, Xue H, Wang C
. Trioxacarcin A Interactions with G-Quadruplex DNA Reveal Its Potential New Targets as an Anticancer Agent. J Med Chem. 2023; 66(10):6798-6810.
DOI: 10.1021/acs.jmedchem.3c00178.
View