6.
Berthelot L, Robert T, Vuiblet V, Tabary T, Braconnier A, Drame M
. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 2015; 88(4):815-22.
DOI: 10.1038/ki.2015.158.
View
7.
Kiryluk K, Novak J
. The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014; 124(6):2325-32.
PMC: 4089454.
DOI: 10.1172/JCI74475.
View
8.
Ohyama Y, Yamaguchi H, Ogata S, Chiurlia S, Cox S, Kouri N
. Racial heterogeneity of IgA1 hinge-region -glycoforms in patients with IgA nephropathy. iScience. 2022; 25(11):105223.
PMC: 9583103.
DOI: 10.1016/j.isci.2022.105223.
View
9.
Stewart T, Takahashi K, Xu N, Prakash A, Brown R, Raska M
. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology. 2020; 31(5):540-556.
PMC: 8176776.
DOI: 10.1093/glycob/cwaa111.
View
10.
Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K
. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012; 82(7):790-6.
PMC: 3443545.
DOI: 10.1038/ki.2012.197.
View
11.
Jemelkova J, Stuchlova Horynova M, Kosztyu P, Zachova K, Zadrazil J, Galuszkova D
. GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy. Kidney Int Rep. 2023; 8(5):1068-1075.
PMC: 10166743.
DOI: 10.1016/j.ekir.2023.02.1072.
View
12.
Daniel E, Las Rivas M, Lira-Navarrete E, Garcia-Garcia A, Hurtado-Guerrero R, Clausen H
. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology. 2020; 30(11):910-922.
PMC: 7581654.
DOI: 10.1093/glycob/cwaa036.
View
13.
Yamada K, Huang Z, Raska M, Reily C, Anderson J, Suzuki H
. Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Dis (Basel). 2020; 6(3):168-180.
PMC: 7265702.
DOI: 10.1159/000505748.
View
14.
Yamada K, Huang Z, Reily C, Green T, Suzuki H, Novak J
. LIF/JAK2/STAT1 Signaling Enhances Production of Galactose-Deficient IgA1 by IgA1-Producing Cell Lines Derived From Tonsils of Patients With IgA Nephropathy. Kidney Int Rep. 2024; 9(2):423-435.
PMC: 10851019.
DOI: 10.1016/j.ekir.2023.11.003.
View
15.
Maillard N, Wyatt R, Julian B, Kiryluk K, Gharavi A, Fremeaux-Bacchi V
. Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol. 2015; 26(7):1503-12.
PMC: 4483595.
DOI: 10.1681/ASN.2014101000.
View
16.
Liu L, Khan A, Sanchez-Rodriguez E, Zanoni F, Li Y, Steers N
. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat Commun. 2022; 13(1):6859.
PMC: 9651905.
DOI: 10.1038/s41467-022-34456-6.
View
17.
Ohyama Y, Renfrow M, Novak J, Takahashi K
. Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know. J Clin Med. 2021; 10(16).
PMC: 8396900.
DOI: 10.3390/jcm10163467.
View
18.
Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H
. New Insights into the Pathogenesis of IgA Nephropathy. Kidney Dis (Basel). 2015; 1(1):8-18.
PMC: 4640461.
DOI: 10.1159/000382134.
View
19.
Tomana M, Novak J, Julian B, Matousovic K, Konecny K, Mestecky J
. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999; 104(1):73-81.
PMC: 408399.
DOI: 10.1172/JCI5535.
View
20.
Yamada K, Huang Z, Raska M, Reily C, Anderson J, Suzuki H
. Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney Int Rep. 2017; 2(6):1194-1207.
PMC: 5733772.
DOI: 10.1016/j.ekir.2017.07.002.
View