6.
Li J, Xi M, Hu L, Sun H, Zhu C, Gu W
. A Controlled Release Aptasensor Utilizing AIE-Active MOFs as High-Efficiency ECL Nanoprobe for the Sensitive Detection of Adenosine Triphosphate. Anal Chem. 2024; 96(5):2100-2106.
DOI: 10.1021/acs.analchem.3c04794.
View
7.
Han Q, Wang C, Li Z, Wu J, Liu P, Mo F
. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem. 2020; 92(4):3324-3331.
DOI: 10.1021/acs.analchem.9b05262.
View
8.
Descamps J, Zhao Y, Goudeau B, Manojlovic D, Loget G, Sojic N
. Infrared photoinduced electrochemiluminescence microscopy of single cells. Chem Sci. 2024; 15(6):2055-2061.
PMC: 10848722.
DOI: 10.1039/d3sc05983a.
View
9.
Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H
. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012; 84(11):4754-9.
DOI: 10.1021/ac300205w.
View
10.
Jiang M, Li S, Zhong X, Liang W, Chai Y, Zhuo Y
. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Anal Chem. 2019; 91(5):3710-3716.
DOI: 10.1021/acs.analchem.8b05949.
View
11.
Zhang J, Devaramani S, Shan D, Lu X
. Electrochemiluminescence behavior of meso-tetra(4-sulfonatophenyl)porphyrin in aqueous medium: its application for highly selective sensing of nanomolar Cu(2.). Anal Bioanal Chem. 2016; 408(25):7155-63.
DOI: 10.1007/s00216-016-9655-0.
View
12.
Xiong X, Xiong C, Gao Y, Xiao Y, Chen M, Wen W
. Tetraphenylethylene-Functionalized Metal-Organic Frameworks with Strong Aggregation-Induced Electrochemiluminescence for Ultrasensitive Analysis through a Multiple Convertible Resonance Energy Transfer System. Anal Chem. 2022; 94(22):7861-7867.
DOI: 10.1021/acs.analchem.2c00295.
View
13.
Liu J, Sun Y, Huo Y, Zhang H, Wang L, Zhang P
. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc. 2013; 136(2):574-7.
DOI: 10.1021/ja409578w.
View
14.
Ning X, Du P, Han Z, Chen J, Lu X
. Insight into the Transition-Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation. Angew Chem Int Ed Engl. 2020; 60(7):3504-3509.
DOI: 10.1002/anie.202013014.
View
15.
You J, Lee S, Tark H, Nang M, Oh J, Choi I
. Optical Detection of Copper Ions Structural Dissociation of Plasmonic Sugar Nanoprobes. Anal Chem. 2022; 94(14):5521-5529.
DOI: 10.1021/acs.analchem.1c04340.
View
16.
Zhong D, Liu S, Yue L, Feng Z, Wang H, Yang P
. Achieving pure room temperature phosphorescence (RTP) in phenoselenazine-based organic emitters through synergism among heavy atom effect, enhanced n → π* transitions and magnified electron coupling by the A-D-A molecular configuration. Chem Sci. 2024; 15(24):9112-9119.
PMC: 11186343.
DOI: 10.1039/d4sc01200c.
View
17.
He Y, Yang L, Zhang F, Zhang B, Zou G
. Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence. J Phys Chem Lett. 2018; 9(20):6089-6095.
DOI: 10.1021/acs.jpclett.8b02645.
View
18.
Luo R, Lv H, Liao Q, Wang N, Yang J, Li Y
. Intrareticular charge transfer regulated electrochemiluminescence of donor-acceptor covalent organic frameworks. Nat Commun. 2021; 12(1):6808.
PMC: 8611053.
DOI: 10.1038/s41467-021-27127-5.
View
19.
Cui W, Li Y, Jiang Q, Wu Q, Luo Q, Zhang L
. Covalent Organic Frameworks as Advanced Uranyl Electrochemiluminescence Monitoring Platforms. Anal Chem. 2021; 93(48):16149-16157.
DOI: 10.1021/acs.analchem.1c03907.
View
20.
Chen K, Zhao J, Li X, Gurzadyan G
. Anthracene-Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing. J Phys Chem A. 2019; 123(13):2503-2516.
DOI: 10.1021/acs.jpca.8b11828.
View