6.
Magoc T, Salzberg S
. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011; 27(21):2957-63.
PMC: 3198573.
DOI: 10.1093/bioinformatics/btr507.
View
7.
Chao G, Lau W, Hackel B, Sazinsky S, Lippow S, Wittrup K
. Isolating and engineering human antibodies using yeast surface display. Nat Protoc. 2007; 1(2):755-68.
DOI: 10.1038/nprot.2006.94.
View
8.
Jubb H, Pandurangan A, Turner M, Ochoa-Montano B, Blundell T, Ascher D
. Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol. 2016; 128:3-13.
DOI: 10.1016/j.pbiomolbio.2016.10.002.
View
9.
Arkadash V, Yosef G, Shirian J, Cohen I, Horev Y, Grossman M
. Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. J Biol Chem. 2017; 292(8):3481-3495.
PMC: 5336179.
DOI: 10.1074/jbc.M116.756718.
View
10.
Morrison K, Weiss G
. Combinatorial alanine-scanning. Curr Opin Chem Biol. 2001; 5(3):302-7.
DOI: 10.1016/s1367-5931(00)00206-4.
View
11.
Angelini A, Chen T, de Picciotto S, Yang N, Tzeng A, Santos M
. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol. 2015; 1319:3-36.
DOI: 10.1007/978-1-4939-2748-7_1.
View
12.
Starr T, Thornton J
. Epistasis in protein evolution. Protein Sci. 2016; 25(7):1204-18.
PMC: 4918427.
DOI: 10.1002/pro.2897.
View
13.
Naftaly S, Cohen I, Shahar A, Hockla A, Radisky E, Papo N
. Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Nat Commun. 2018; 9(1):3935.
PMC: 6158287.
DOI: 10.1038/s41467-018-06403-x.
View
14.
Currin A, Kwok J, Sadler J, Bell E, Swainston N, Ababi M
. GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries. ACS Synth Biol. 2019; 8(6):1371-1378.
PMC: 7007284.
DOI: 10.1021/acssynbio.9b00063.
View
15.
Wingfield P, Sax J, Stahl S, Kaufman J, Palmer I, Chung V
. Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for.... J Biol Chem. 1999; 274(30):21362-8.
DOI: 10.1074/jbc.274.30.21362.
View
16.
Jenson J, Xue V, Stretz L, Mandal T, Reich L, Keating A
. Peptide design by optimization on a data-parameterized protein interaction landscape. Proc Natl Acad Sci U S A. 2018; 115(44):E10342-E10351.
PMC: 6217393.
DOI: 10.1073/pnas.1812939115.
View
17.
Heyne M, Papo N, Shifman J
. Generating quantitative binding landscapes through fractional binding selections combined with deep sequencing and data normalization. Nat Commun. 2020; 11(1):297.
PMC: 6962383.
DOI: 10.1038/s41467-019-13895-8.
View
18.
Hsu C, Nisonoff H, Fannjiang C, Listgarten J
. Learning protein fitness models from evolutionary and assay-labeled data. Nat Biotechnol. 2022; 40(7):1114-1122.
DOI: 10.1038/s41587-021-01146-5.
View
19.
Sharabi O, Shirian J, Grossman M, Lebendiker M, Sagi I, Shifman J
. Affinity- and specificity-enhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs. PLoS One. 2014; 9(4):e93712.
PMC: 3977929.
DOI: 10.1371/journal.pone.0093712.
View
20.
Aharon L, Aharoni S, Radisky E, Papo N
. Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Biochem J. 2020; 477(9):1701-1719.
PMC: 7376575.
DOI: 10.1042/BCJ20200188.
View