6.
Audeh M, Carmichael J, Penson R, Friedlander M, Powell B, Bell-McGuinn K
. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010; 376(9737):245-51.
DOI: 10.1016/S0140-6736(10)60893-8.
View
7.
Barber L, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K
. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2012; 229(3):422-9.
DOI: 10.1002/path.4140.
View
8.
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin A, Kim S
. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391):603-7.
PMC: 3320027.
DOI: 10.1038/nature11003.
View
9.
Bender A, Pringle J
. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1991; 11(3):1295-305.
PMC: 369400.
DOI: 10.1128/mcb.11.3.1295-1305.1991.
View
10.
Bernards R, Brummelkamp T, Beijersbergen R
. shRNA libraries and their use in cancer genetics. Nat Methods. 2006; 3(9):701-6.
DOI: 10.1038/nmeth921.
View
11.
Biechele-Speziale D, Sutton T, Delaney S
. Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst). 2022; 116:103345.
PMC: 9253077.
DOI: 10.1016/j.dnarep.2022.103345.
View
12.
Biegala L, Gajek A, Marczak A, Rogalska A
. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer. 2021; 1876(2):188633.
DOI: 10.1016/j.bbcan.2021.188633.
View
13.
Blackford A, Jackson S
. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell. 2017; 66(6):801-817.
DOI: 10.1016/j.molcel.2017.05.015.
View
14.
Bonelli M, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A
. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells. Neoplasia. 2017; 19(8):637-648.
PMC: 5508477.
DOI: 10.1016/j.neo.2017.05.003.
View
15.
Bradbury A, Hall S, Curtin N, Drew Y
. Targeting ATR as Cancer Therapy: A new era for synthetic lethality and synergistic combinations?. Pharmacol Ther. 2019; 207:107450.
DOI: 10.1016/j.pharmthera.2019.107450.
View
16.
Bridges K, Hirai H, Buser C, Brooks C, Liu H, Buchholz T
. MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res. 2011; 17(17):5638-48.
PMC: 3167033.
DOI: 10.1158/1078-0432.CCR-11-0650.
View
17.
Brown J, OCarrigan B, Jackson S, Yap T
. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov. 2016; 7(1):20-37.
PMC: 5300099.
DOI: 10.1158/2159-8290.CD-16-0860.
View
18.
Bukhari A, Lewis C, Pearce J, Luong D, Chan G, Gamper A
. Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest. 2019; 129(3):1329-1344.
PMC: 6391092.
DOI: 10.1172/JCI122622.
View
19.
Bukhari A, Chan G, Gamper A
. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol. 2022; 12:828684.
PMC: 8891215.
DOI: 10.3389/fonc.2022.828684.
View
20.
Bunting S, Callen E, Wong N, Chen H, Polato F, Gunn A
. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010; 141(2):243-54.
PMC: 2857570.
DOI: 10.1016/j.cell.2010.03.012.
View