Molecular Glue-mediated Targeted Protein Degradation: A Novel Strategy in Small-molecule Drug Development
Overview
Affiliations
Small-molecule drugs are effective and thus most widely used. However, their applications are limited by their reliance on active high-affinity binding sites, restricting their target options. A breakthrough approach involves molecular glues, a novel class of small-molecule compounds capable of inducing protein-protein interactions (PPIs). This opens avenues to target conventionally undruggable proteins, overcoming limitations seen in conventional small-molecule drugs. Molecular glues play a key role in targeted protein degradation (TPD) techniques, including ubiquitin-proteasome system-based approaches such as proteolysis targeting chimeras (PROTACs) and molecular glue degraders and recently emergent lysosome system-based techniques like molecular degraders of extracellular proteins through the asialoglycoprotein receptors (MoDE-As) and macroautophagy degradation targeting chimeras (MADTACs). These techniques enable an innovative targeted degradation strategy for prolonged inhibition of pathology-associated proteins. This review provides an overview of them, emphasizing the clinical potential of molecular glues and guiding the development of molecular-glue-mediated TPD techniques.
RNA-binding proteins as therapeutic targets in cancer.
Jungfleisch J, Gebauer F RNA Biol. 2025; 22(1):1-8.
PMID: 40016176 PMC: 11869776. DOI: 10.1080/15476286.2025.2470511.
Kedzierska M, Bankosz M J Clin Med. 2024; 13(23).
PMID: 39685591 PMC: 11642550. DOI: 10.3390/jcm13237131.