6.
Haam J, Yakel J
. Cholinergic modulation of the hippocampal region and memory function. J Neurochem. 2017; 142 Suppl 2:111-121.
PMC: 5645066.
DOI: 10.1111/jnc.14052.
View
7.
Abuznait A, Qosa H, OConnell N, Akbarian-Tefaghi J, Sylvester P, El Sayed K
. Induction of expression and functional activity of P-glycoprotein efflux transporter by bioactive plant natural products. Food Chem Toxicol. 2011; 49(11):2765-72.
PMC: 3190057.
DOI: 10.1016/j.fct.2011.08.004.
View
8.
Yadang F, Nguezeye Y, Kom C, Diboue Betote P, Mamat A, Yamthe Tchokouaha L
. Scopolamine-Induced Memory Impairment in Mice: Neuroprotective Effects of (Forssk.) Valh (Apocynaceae) Aqueous Extract. Int J Alzheimers Dis. 2020; 2020:6372059.
PMC: 7479457.
DOI: 10.1155/2020/6372059.
View
9.
Islamie R, Myint S, Rojanaratha T, Ritthidej G, Wanakhachornkrai O, Wattanathamsan O
. Neuroprotective effect of nose-to-brain delivery of Asiatic acid in solid lipid nanoparticles and its mechanisms against memory dysfunction induced by Amyloid Beta in mice. BMC Complement Med Ther. 2023; 23(1):294.
PMC: 10464452.
DOI: 10.1186/s12906-023-04125-2.
View
10.
Simic G, Babic Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milosevic N
. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules. 2016; 6(1):6.
PMC: 4808800.
DOI: 10.3390/biom6010006.
View
11.
Tapeinos C, Battaglini M, Ciofani G
. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017; 264:306-332.
PMC: 6701993.
DOI: 10.1016/j.jconrel.2017.08.033.
View
12.
Ferreira M, de Vasconcelos A, da Costa Vilhena T, da Silva T, da Silva Barbosa A, Gomes A
. Oxidative Stress in Alzheimer's Disease: Should We Keep Trying Antioxidant Therapies?. Cell Mol Neurobiol. 2015; 35(5):595-614.
PMC: 11486210.
DOI: 10.1007/s10571-015-0157-y.
View
13.
Welbat J, Sirichoat A, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Pakdeechote P
. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival. Nutrients. 2016; 8(5).
PMC: 4882715.
DOI: 10.3390/nu8050303.
View
14.
Hafiz Z, Amin M, Johari James R, Teh L, Salleh M, Adenan M
. Inhibitory Effects of Raw-Extract (RECA) on Acetylcholinesterase, Inflammations, and Oxidative Stress Activities via In Vitro and In Vivo. Molecules. 2020; 25(4).
PMC: 7070982.
DOI: 10.3390/molecules25040892.
View
15.
Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J
. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012; 33(5):578-87.
PMC: 4010358.
DOI: 10.1038/aps.2012.3.
View
16.
Gul S, Attaullah S, Alsugoor M, Bawazeer S, Shah S, Khan S
. Folicitin abrogates scopolamine induced oxidative stress, hyperlipidemia mediated neuronal synapse and memory dysfunction in mice. Heliyon. 2023; 9(6):e16930.
PMC: 10320035.
DOI: 10.1016/j.heliyon.2023.e16930.
View
17.
Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J
. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett. 2005; 374(3):222-6.
DOI: 10.1016/j.neulet.2004.10.063.
View
18.
Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y
. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC-MS method. J Ethnopharmacol. 2015; 163:31-8.
DOI: 10.1016/j.jep.2015.01.006.
View
19.
Welbat J, Chaisawang P, Pannangrong W, Wigmore P
. Neuroprotective Properties of Asiatic Acid against 5-Fluorouracil Chemotherapy in the Hippocampus in an Adult Rat Model. Nutrients. 2018; 10(8).
PMC: 6115773.
DOI: 10.3390/nu10081053.
View
20.
Glorieux C, Zamocky M, Sandoval J, Verrax J, Buc Calderon P
. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med. 2015; 87:84-97.
DOI: 10.1016/j.freeradbiomed.2015.06.017.
View