» Articles » PMID: 39285876

Design and Comprehensive Characterization of Dry Powder Inhalation Aerosols of Simvastatin DPPC/DPPG Lung Surfactant-mimic Nanoparticles/microparticles for Pulmonary Nanomedicine

Overview
Journal RSC Adv
Specialty Chemistry
Date 2024 Sep 17
PMID 39285876
Authors
Affiliations
Soon will be listed here.
Abstract

The Rho Kinase (ROCK) pathway is recognized to be involved in changes that lead to remodeling in pulmonary hypertension (PH), particularly cellular processes including signaling, contraction, migration, proliferation, differentiation, and apoptosis. Simvastatin (Sim) has a potent anti-proliferative and pro-apoptotic effect on vasculature smooth muscle cells through the inhibition of the synthesis of isoprenoids intermediates which are essential for the post-translational isoprenylation of Rho, Rac, and Ras family GTPases. Sim targets the underlying mechanism in vascular remodeling. Using bionanomaterials and particle engineering design, this innovative study reports on the advanced inhalable dry powders composed of sim with synthetic phospholipid bionanomaterials, DPPC/DPPG, as a lung surfactant-mimic. These were successfully designed and produced as co-spray dried (Co-SD) nanoparticles and microparticles for nanomedicine delivery as dry powder inhalers (DPIs). Different techniques were used to comprehensively characterize the physicochemical properties of the resulting Co-SD particles. The Next Generation ImpactorTM (NGI™) was used with three different FDA-approved human DPI devices with varying shear stress which were the HandiHaler®, Neohaler®, Aerolizer® DPI devices for aerosol dispersion performance. The formulation-device interactions were examined and correlated. Using human lung cells from different lung regions, cell viability and transepithelial electrical resistance (TEER) at the air-liquid interface showed biocompatibility of the formulations as a function of dose.

References
1.
Hoeper M, McLaughlin V, Dalaan A, Satoh T, Galie N . Treatment of pulmonary hypertension. Lancet Respir Med. 2016; 4(4):323-36. DOI: 10.1016/S2213-2600(15)00542-1. View

2.
Acosta M, Muralidharan P, Grijalva C, Abrahamson M, Hayes Jr D, Fineman J . Advanced therapeutic inhalation aerosols of a Nrf2 activator and RhoA/Rho kinase (ROCK) inhibitor for targeted pulmonary drug delivery in pulmonary hypertension: design, characterization, aerosolization, 2D/3D human lung cell cultures, and efficacy. Ther Adv Respir Dis. 2021; 15:1753466621998245. PMC: 7968029. DOI: 10.1177/1753466621998245. View

3.
Meenach S, Anderson K, Hilt J, McGarry R, Mansour H . High-performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant-mimic multifunctional particles in lung cancer: physicochemical characterization, in vitro aerosol dispersion, and cellular studies. AAPS PharmSciTech. 2014; 15(6):1574-87. PMC: 4245438. DOI: 10.1208/s12249-014-0182-z. View

4.
Ren H, Birch N, Suresh V . An Optimised Human Cell Culture Model for Alveolar Epithelial Transport. PLoS One. 2016; 11(10):e0165225. PMC: 5079558. DOI: 10.1371/journal.pone.0165225. View

5.
Russo P, Stigliani M, Prota L, Auriemma G, Crescenzi C, Porta A . Gentamicin and leucine inhalable powder: what about antipseudomonal activity and permeation through cystic fibrosis mucus?. Int J Pharm. 2012; 440(2):250-5. DOI: 10.1016/j.ijpharm.2012.05.077. View