6.
Song H, Rosano J, Wang Y, Garson C, Prabhakarpandian B, Pant K
. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip. 2015; 15(5):1320-8.
PMC: 8385543.
DOI: 10.1039/c4lc01253d.
View
7.
Kwon S, Kwon Y, Lee T, Park G, Kim J
. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res. 2019; 22:36.
PMC: 6299977.
DOI: 10.1186/s40824-018-0148-4.
View
8.
Pattanayak P, Singh S, Gulati M, Vishwas S, Kapoor B, Chellappan D
. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluidics. 2021; 25(12):99.
PMC: 8547131.
DOI: 10.1007/s10404-021-02502-2.
View
9.
Volarevic V, Markovic B, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N
. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci. 2018; 15(1):36-45.
PMC: 5765738.
DOI: 10.7150/ijms.21666.
View
10.
Knoepfler P
. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009; 27(5):1050-6.
PMC: 2733374.
DOI: 10.1002/stem.37.
View
11.
Kerk Y, Jameel A, Xing X, Zhang C
. Recent advances of integrated microfluidic suspension cell culture system. Eng Biol. 2023; 5(4):103-119.
PMC: 9996741.
DOI: 10.1049/enb2.12015.
View
12.
Rackus D, Riedel-Kruse I, Pamme N
. "Learning on a chip:" Microfluidics for formal and informal science education. Biomicrofluidics. 2019; 13(4):041501.
PMC: 6697029.
DOI: 10.1063/1.5096030.
View
13.
Ashton R, Keung A, Peltier J, Schaffer D
. Progress and prospects for stem cell engineering. Annu Rev Chem Biomol Eng. 2012; 2:479-502.
PMC: 5991629.
DOI: 10.1146/annurev-chembioeng-061010-114105.
View
14.
Liu G, Wu Y, Kong F, Ma S, Fu L, Geng J
. BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models. PLoS One. 2021; 16(5):e0243014.
PMC: 8118321.
DOI: 10.1371/journal.pone.0243014.
View
15.
Daniszewski M, Crombie D, Henderson R, Liang H, Wong R, Hewitt A
. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technol. 2017; 23(4):315-325.
DOI: 10.1177/2472630317712220.
View
16.
Kato S, Carlson D, Shen A, Guo Y
. Twisted fiber microfluidics: a cutting-edge approach to 3D spiral devices. Microsyst Nanoeng. 2024; 10:14.
PMC: 10800335.
DOI: 10.1038/s41378-023-00642-9.
View
17.
Jammes F, Maerkl S
. How single-cell immunology is benefiting from microfluidic technologies. Microsyst Nanoeng. 2021; 6:45.
PMC: 8433390.
DOI: 10.1038/s41378-020-0140-8.
View
18.
Pillai S, Kwan J, Yaziji F, Yu H, Tran S
. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel). 2023; 15(15).
PMC: 10417175.
DOI: 10.3390/cancers15153894.
View
19.
Wei L, Li W, Entcheva E, Li Z
. Microfluidics-enabled 96-well perfusion system for high-throughput tissue engineering and long-term all-optical electrophysiology. Lab Chip. 2020; 20(21):4031-4042.
PMC: 7680692.
DOI: 10.1039/d0lc00615g.
View
20.
Liu M, Liu N, Zang R, Li Y, Yang S
. Engineering stem cell niches in bioreactors. World J Stem Cells. 2013; 5(4):124-35.
PMC: 3812517.
DOI: 10.4252/wjsc.v5.i4.124.
View