6.
Wang X, Qin Q, Lu Y, Mi Y, Meng J, Zhao Z
. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. Nanomaterials (Basel). 2023; 13(8).
PMC: 10141953.
DOI: 10.3390/nano13081316.
View
7.
Yang S, Tao X, Chen W, Mao J, Luo H, Lin S
. Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation. Adv Mater. 2022; 34(21):e2200693.
DOI: 10.1002/adma.202200693.
View
8.
Yu D, Teng Y, Feng H, Lin X, Li J, Wang Q
. Multi-responsive and conductive bilayer hydrogel and its application in flexible devices. RSC Adv. 2022; 12(13):7898-7905.
PMC: 8982352.
DOI: 10.1039/d1ra09232d.
View
9.
Wang Z, Zhou H, Chen W, Li Q, Yan B, Jin X
. Dually Synergetic Network Hydrogels with Integrated Mechanical Stretchability, Thermal Responsiveness, and Electrical Conductivity for Strain Sensors and Temperature Alertors. ACS Appl Mater Interfaces. 2018; 10(16):14045-14054.
DOI: 10.1021/acsami.8b02060.
View
10.
Sun Q, Liang F, Ren G, Zhang L, He S, Gao K
. Density-of-States Matching-Induced Ultrahigh Current Density and High-Humidity Resistance in a Simply Structured Triboelectric Nanogenerator. Adv Mater. 2023; 35(14):e2210915.
DOI: 10.1002/adma.202210915.
View
11.
Priyadarshini B, Mitra R, Manju U
. Titania Nanoparticle-Stimulated Ultralow Frequency Detection and High-Pass Filter Behavior of a Flexible Piezoelectric Nanogenerator: A Self-Sustaining Energy Harvester for Active Motion Tracking. ACS Appl Mater Interfaces. 2023; 15(39):45812-45822.
DOI: 10.1021/acsami.3c07413.
View
12.
Zhao F, Cheng H, Zhang Z, Jiang L, Qu L
. Direct Power Generation from a Graphene Oxide Film under Moisture. Adv Mater. 2015; 27(29):4351-7.
DOI: 10.1002/adma.201501867.
View
13.
Song Y, Zhang S, Kang J, Chen J, Cao Y
. Water absorption dependence of the formation of poly(vinyl alcohol)-iodine complexes for poly(vinyl alcohol) films. RSC Adv. 2022; 11(46):28785-28796.
PMC: 9038136.
DOI: 10.1039/d1ra04867h.
View
14.
Gupta S, Chatterjee C, Fatma B, Brajesh K, Bhunia R, Sowmya N
. Functionality Tuning in Hierarchically Engineered Magnetoelectric Nanocomposites for Energy-Harvesting Applications. ACS Appl Mater Interfaces. 2023; 15(22):26563-26575.
DOI: 10.1021/acsami.3c01435.
View
15.
Han Y, Wang Y, Wang M, Lv Z, Zhang Z, He H
. Selective ion migration in a polyelectrolyte driving a high-performance flexible moisture-electric generator. Chem Commun (Camb). 2024; 60(48):6178-6181.
DOI: 10.1039/d4cc01652a.
View
16.
Li Y, Luo Y, Deng H, Shi S, Tian S, Wu H
. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications. Adv Mater. 2024; 36(52):e2314380.
DOI: 10.1002/adma.202314380.
View
17.
Mariappan V, Krishnamoorthy K, Pazhamalai P, Manoharan S, Kim S
. Decoupling Contact and Rotary Triboelectrification vs Materials Property: Toward Understanding the Origin of Direct-Current Generation in TENG. ACS Appl Mater Interfaces. 2022; 14(30):34593-34602.
DOI: 10.1021/acsami.2c05610.
View
18.
Llacer-Wintle J, Renz J, Hertle L, Veciana A, von Arx D, Wu J
. The magnetopyroelectric effect: heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites. Mater Horiz. 2023; 10(7):2627-2637.
PMC: 10317111.
DOI: 10.1039/d2mh01361d.
View
19.
Moulin E, Faour L, Carmona-Vargas C, Giuseppone N
. From Molecular Machines to Stimuli-Responsive Materials. Adv Mater. 2019; 32(20):e1906036.
DOI: 10.1002/adma.201906036.
View
20.
Zhang Y, Li J, Zhou H, Liu Y, Han D, Sun H
. Electro-responsive actuators based on graphene. Innovation (Camb). 2021; 2(4):100168.
PMC: 8551502.
DOI: 10.1016/j.xinn.2021.100168.
View