» Articles » PMID: 39273358

Quercetin Mitigates Lysophosphatidylcholine (LPC)-Induced Neutrophil Extracellular Traps (NETs) Formation Through Inhibiting the P2X7R/P38MAPK/NOX2 Pathway

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2024 Sep 14
PMID 39273358
Authors
Affiliations
Soon will be listed here.
Abstract

Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.

References
1.
Zhou E, Wu Z, Zhu X, Li P, Wang J, Yang Z . Histamine triggers the formation of neutrophil extracellular traps via NADPH oxidase, ERK and p38 pathways. Vet Immunol Immunopathol. 2021; 235:110234. DOI: 10.1016/j.vetimm.2021.110234. View

2.
Takenouchi T, Sato M, Kitani H . Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J Neurochem. 2007; 102(5):1518-1532. DOI: 10.1111/j.1471-4159.2007.04570.x. View

3.
Wei J, Hu M, Chen X, Wei J, Chen J, Qin X . Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway. Curr Med Sci. 2023; 43(3):469-477. DOI: 10.1007/s11596-023-2744-3. View

4.
Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005; 15(1):11-8. DOI: 10.1038/sj.cr.7290257. View

5.
Yuan K, Zhu Q, Lu Q, Jiang H, Zhu M, Li X . Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J Nutr Biochem. 2020; 84:108454. DOI: 10.1016/j.jnutbio.2020.108454. View