6.
Mahmoudiandehkordi S, Bhattacharyya S, Brydges C, Jia W, Fiehn O, Rush A
. Gut Microbiome-Linked Metabolites in the Pathobiology of Major Depression With or Without Anxiety-A Role for Bile Acids. Front Neurosci. 2022; 16:937906.
PMC: 9350527.
DOI: 10.3389/fnins.2022.937906.
View
7.
Baloni P, Funk C, Yan J, Yurkovich J, Kueider-Paisley A, Nho K
. Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer's Disease. Cell Rep Med. 2020; 1(8):100138.
PMC: 7691449.
DOI: 10.1016/j.xcrm.2020.100138.
View
8.
Wang Z, Li J, Xu Y, Liu Y, Zhang Z, Xu Q
. Elevated gut microbiota metabolite bile acids confer protective effects on clinical prognosis in ischemic stroke patients. Front Neurosci. 2024; 18:1388748.
PMC: 11033300.
DOI: 10.3389/fnins.2024.1388748.
View
9.
Smaling A, Romero-Ramirez L, Mey J
. Is TGR5 a therapeutic target for the treatment of spinal cord injury?. J Neurochem. 2022; 164(4):454-467.
DOI: 10.1111/jnc.15727.
View
10.
St-Pierre M, Kullak-Ublick G, Hagenbuch B, Meier P
. Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol. 2001; 204(Pt 10):1673-86.
DOI: 10.1242/jeb.204.10.1673.
View
11.
Terwel D, Steffensen K, Verghese P, Kummer M, Gustafsson J, Holtzman D
. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J Neurosci. 2011; 31(19):7049-59.
PMC: 6703224.
DOI: 10.1523/JNEUROSCI.6546-10.2011.
View
12.
Lu X, Yang R, Zhang J, Wang P, Gong Y, Hu W
. Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol. 2018; 32(4):363-377.
DOI: 10.1111/fcp.12367.
View
13.
Diczfalusy U, Olofsson K, Carlsson A, Gong M, Golenbock D, Rooyackers O
. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res. 2009; 50(11):2258-64.
PMC: 2759831.
DOI: 10.1194/jlr.M900107-JLR200.
View
14.
Song C, Hiipakka R, Liao S
. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids. 2000; 65(8):423-7.
DOI: 10.1016/s0039-128x(00)00127-6.
View
15.
Patte-Mensah C, Kappes V, Freund-Mercier M, Tsutsui K, Mensah-Nyagan A
. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem. 2003; 86(5):1233-46.
DOI: 10.1046/j.1471-4159.2003.01935.x.
View
16.
Kusaczuk M
. Tauroursodeoxycholate-Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells. 2019; 8(12).
PMC: 6952947.
DOI: 10.3390/cells8121471.
View
17.
Vassileva G, Hu W, Hoos L, Tetzloff G, Yang S, Liu L
. Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol. 2010; 205(3):225-32.
DOI: 10.1677/JOE-10-0009.
View
18.
Weng J, Wang L, Wang K, Su H, Luo D, Yang H
. Tauroursodeoxycholic Acid Inhibited Apoptosis and Oxidative Stress in HO-Induced BMSC Death via Modulating the Nrf-2 Signaling Pathway: the Therapeutic Implications in a Rat Model of Spinal Cord Injury. Mol Neurobiol. 2023; 61(7):3753-3768.
PMC: 11236931.
DOI: 10.1007/s12035-023-03754-5.
View
19.
Rosa A, Duarte-Silva S, Silva-Fernandes A, Nunes M, Carvalho A, Rodrigues E
. Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease. Mol Neurobiol. 2018; 55(12):9139-9155.
DOI: 10.1007/s12035-018-1062-4.
View
20.
Viho E, Buurstede J, Mahfouz A, Koorneef L, van Weert L, Houtman R
. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology. 2019; 109(3):266-276.
PMC: 6878852.
DOI: 10.1159/000499659.
View