6.
Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A
. Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell. 2019; 24(5):724-735.e5.
PMC: 6509360.
DOI: 10.1016/j.stem.2019.03.012.
View
7.
Guo M, Zhang Y, Zhou J, Bi Y, Xu J, Xu C
. Precise temporal regulation of Dux is important for embryo development. Cell Res. 2019; 29(11):956-959.
PMC: 6889123.
DOI: 10.1038/s41422-019-0238-4.
View
8.
Sacconi S, Briand-Suleau A, Gros M, Baudoin C, Lemmers R, Rondeau S
. FSHD1 and FSHD2 form a disease continuum. Neurology. 2019; 92(19):e2273-e2285.
PMC: 6537132.
DOI: 10.1212/WNL.0000000000007456.
View
9.
Chen Z, Zhang Y
. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat Genet. 2019; 51(6):947-951.
PMC: 6545155.
DOI: 10.1038/s41588-019-0418-7.
View
10.
Dmitriev P, Saada Y, Dib C, Ansseau E, Barat A, Hamade A
. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radic Biol Med. 2016; 99:244-258.
DOI: 10.1016/j.freeradbiomed.2016.08.007.
View
11.
Lemmers R, Tawil R, Petek L, Balog J, Block G, Santen G
. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet. 2012; 44(12):1370-4.
PMC: 3671095.
DOI: 10.1038/ng.2454.
View
12.
Larsen M, Rost S, El Hajj N, Ferbert A, Deschauer M, Walter M
. Diagnostic approach for FSHD revisited: SMCHD1 mutations cause FSHD2 and act as modifiers of disease severity in FSHD1. Eur J Hum Genet. 2014; 23(6):808-16.
PMC: 4795050.
DOI: 10.1038/ejhg.2014.191.
View
13.
Das S, Chadwick B
. Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells. PLoS One. 2016; 11(7):e0160022.
PMC: 4965136.
DOI: 10.1371/journal.pone.0160022.
View
14.
Teperek M, Simeone A, Gaggioli V, Miyamoto K, Allen G, Erkek S
. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res. 2016; 26(8):1034-46.
PMC: 4971762.
DOI: 10.1101/gr.201541.115.
View
15.
Hartweck L, Anderson L, Lemmers R, Dandapat A, Toso E, Dalton J
. A focal domain of extreme demethylation within D4Z4 in FSHD2. Neurology. 2013; 80(4):392-9.
PMC: 3589240.
DOI: 10.1212/WNL.0b013e31827f075c.
View
16.
Dittrich M, Bernhardt L, Penfold C, Boroviak T, Drummer C, Behr R
. Age-related and species-specific methylation changes in the protein-coding marmoset sperm epigenome. Aging Cell. 2024; 23(8):e14200.
PMC: 11320356.
DOI: 10.1111/acel.14200.
View
17.
Fauque P
. Ovulation induction and epigenetic anomalies. Fertil Steril. 2013; 99(3):616-23.
DOI: 10.1016/j.fertnstert.2012.12.047.
View
18.
Wallace L, Garwick S, Mei W, Belayew A, Coppee F, Ladner K
. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol. 2011; 69(3):540-52.
PMC: 4098764.
DOI: 10.1002/ana.22275.
View
19.
Vuoristo S, Bhagat S, Hyden-Granskog C, Yoshihara M, Gawriyski L, Jouhilahti E
. is a multifunctional factor priming human embryonic genome activation. iScience. 2022; 25(4):104137.
PMC: 8990217.
DOI: 10.1016/j.isci.2022.104137.
View
20.
Hashimoto K, Jouhilahti E, Tohonen V, Carninci P, Kere J, Katayama S
. Embryonic LTR retrotransposons supply promoter modules to somatic tissues. Genome Res. 2021; 31(11):1983-1993.
PMC: 8559712.
DOI: 10.1101/gr.275354.121.
View