6.
Busk M, Overgaard J, Horsman M
. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med. 2020; 50(6):562-583.
DOI: 10.1053/j.semnuclmed.2020.05.003.
View
7.
Bollineni V, Widder J, Pruim J, Langendijk J, Wiegman E
. Residual ¹⁸F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int J Radiat Oncol Biol Phys. 2012; 83(4):e551-5.
DOI: 10.1016/j.ijrobp.2012.01.012.
View
8.
Bristow R, Hill R
. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008; 8(3):180-92.
DOI: 10.1038/nrc2344.
View
9.
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R
. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel). 2023; 15(21).
PMC: 10648987.
DOI: 10.3390/cancers15215288.
View
10.
Liu J, Dong M, Sun X, Li W, Xing L, Yu J
. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One. 2016; 11(1):e0146195.
PMC: 4699812.
DOI: 10.1371/journal.pone.0146195.
View
11.
Chen S, Guevara M, Ramirez N, Murray A, Warner J, Aerts H
. Natural Language Processing to Automatically Extract the Presence and Severity of Esophagitis in Notes of Patients Undergoing Radiotherapy. JCO Clin Cancer Inform. 2023; 7:e2300048.
DOI: 10.1200/CCI.23.00048.
View
12.
Nasief H, Zheng C, Schott D, Hall W, Tsai S, Erickson B
. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis Oncol. 2019; 3:25.
PMC: 6778189.
DOI: 10.1038/s41698-019-0096-z.
View
13.
Abdelkarem O, Choudhury A, Burnet N, Summersgill H, West C
. Effect of Race and Ethnicity on Risk of Radiotherapy Toxicity and Implications for Radiogenomics. Clin Oncol (R Coll Radiol). 2022; 34(10):653-669.
DOI: 10.1016/j.clon.2022.03.013.
View
14.
Franco N, Massi M, Ieva F, Manzoni A, Paganoni A, Zunino P
. Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity. Radiother Oncol. 2021; 159:241-248.
PMC: 8754257.
DOI: 10.1016/j.radonc.2021.03.024.
View
15.
Jeong J, Shoghi K, Deasy J
. Modelling the interplay between hypoxia and proliferation in radiotherapy tumour response. Phys Med Biol. 2013; 58(14):4897-919.
PMC: 4784425.
DOI: 10.1088/0031-9155/58/14/4897.
View
16.
Scott P, Heigl M, McCay C, Shepperdson P, Lima-Walton E, Andrikopoulou E
. Modelling clinical narrative as computable knowledge: The NICE computable implementation guidance project. Learn Health Syst. 2023; 7(4):e10394.
PMC: 10582221.
DOI: 10.1002/lrh2.10394.
View
17.
Lee S, Liang X, Woods M, Reiner A, Concannon P, Bernstein L
. Machine learning on genome-wide association studies to predict the risk of radiation-associated contralateral breast cancer in the WECARE Study. PLoS One. 2020; 15(2):e0226157.
PMC: 7046218.
DOI: 10.1371/journal.pone.0226157.
View
18.
Huynh L, Hwang Y, Taylor O, Baine M
. The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature. Diagnostics (Basel). 2023; 13(6).
PMC: 10047271.
DOI: 10.3390/diagnostics13061128.
View
19.
Palma G, Monti S, Conson M, Pacelli R, Cella L
. Normal tissue complication probability (NTCP) models for modern radiation therapy. Semin Oncol. 2019; 46(3):210-218.
DOI: 10.1053/j.seminoncol.2019.07.006.
View
20.
Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L
. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int J Radiat Oncol Biol Phys. 2022; 115(3):746-758.
DOI: 10.1016/j.ijrobp.2022.08.047.
View