6.
Galmes J, Capo-Bauca S, Niinemets U, Iniguez C
. Potential improvement of photosynthetic CO assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits. Curr Opin Plant Biol. 2019; 49:60-67.
DOI: 10.1016/j.pbi.2019.05.002.
View
7.
Ziska L, Bunce J, Shimono H, Gealy D, Baker J, Newton P
. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc Biol Sci. 2012; 279(1745):4097-105.
PMC: 3441068.
DOI: 10.1098/rspb.2012.1005.
View
8.
Galmes J, Hermida-Carrera C, Laanisto L, Niinemets U
. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. J Exp Bot. 2016; 67(17):5067-91.
PMC: 5014154.
DOI: 10.1093/jxb/erw267.
View
9.
Sharwood R, Crous K, Whitney S, Ellsworth D, Ghannoum O
. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus. J Exp Bot. 2017; 68(5):1157-1167.
PMC: 5444472.
DOI: 10.1093/jxb/erw484.
View
10.
Galmes J, Aranjuelo I, Medrano H, Flexas J
. Variation in Rubisco content and activity under variable climatic factors. Photosynth Res. 2013; 117(1-3):73-90.
DOI: 10.1007/s11120-013-9861-y.
View
11.
Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice J, Nogues S, Araus J
. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?. J Exp Bot. 2011; 62(11):3957-69.
PMC: 3134354.
DOI: 10.1093/jxb/err095.
View
12.
Tubiello F, Soussana J, Howden S
. Crop and pasture response to climate change. Proc Natl Acad Sci U S A. 2007; 104(50):19686-90.
PMC: 2148358.
DOI: 10.1073/pnas.0701728104.
View
13.
Leakey A, Ainsworth E, Bernacchi C, Rogers A, Long S, Ort D
. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot. 2009; 60(10):2859-76.
DOI: 10.1093/jxb/erp096.
View
14.
Buckley T
. How do stomata respond to water status?. New Phytol. 2019; 224(1):21-36.
DOI: 10.1111/nph.15899.
View
15.
Jiang D, Mulero G, Bonfil D, Helman D
. Early or late? The role of genotype phenology in determining wheat response to drought under future high atmospheric CO levels. Plant Cell Environ. 2022; 45(12):3445-3461.
PMC: 9828765.
DOI: 10.1111/pce.14430.
View
16.
Curtis P, Wang X
. A meta-analysis of elevated CO effects on woody plant mass, form, and physiology. Oecologia. 2017; 113(3):299-313.
DOI: 10.1007/s004420050381.
View
17.
Parvin S, Uddin S, Bourgault M, Roessner U, Tausz-Posch S, Armstrong R
. Water availability moderates N fixation benefit from elevated [CO ]: A 2-year free-air CO enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem. Plant Cell Environ. 2018; 41(10):2418-2434.
DOI: 10.1111/pce.13360.
View
18.
Perdomo J, Carmo-Silva E, Hermida-Carrera C, Flexas J, Galmes J
. Acclimation of Biochemical and Diffusive Components of Photosynthesis in Rice, Wheat, and Maize to Heat and Water Deficit: Implications for Modeling Photosynthesis. Front Plant Sci. 2016; 7:1719.
PMC: 5118457.
DOI: 10.3389/fpls.2016.01719.
View
19.
Ainsworth E, Long S
. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005; 165(2):351-71.
DOI: 10.1111/j.1469-8137.2004.01224.x.
View
20.
Ehleringer J, Bjorkman O
. Quantum Yields for CO(2) Uptake in C(3) and C(4) Plants: Dependence on Temperature, CO(2), and O(2) Concentration. Plant Physiol. 1977; 59(1):86-90.
PMC: 542335.
DOI: 10.1104/pp.59.1.86.
View