6.
Han J, Wang Y, Ma Y, Wang C
. Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation. ACS Appl Mater Interfaces. 2023; 15(26):31795-31802.
DOI: 10.1021/acsami.3c04791.
View
7.
Fu S, Wu H, He W, Li Q, Shan C, Wang J
. Conversion of Dielectric Surface Effect into Volume Effect for High Output Energy. Adv Mater. 2023; 35(40):e2302954.
DOI: 10.1002/adma.202302954.
View
8.
Wang Y, Yamada N, Xu J, Zhang J, Chen Q, Ootani Y
. Triboemission of hydrocarbon molecules from diamond-like carbon friction interface induces atomic-scale wear. Sci Adv. 2019; 5(11):eaax9301.
PMC: 6858253.
DOI: 10.1126/sciadv.aax9301.
View
9.
Tian J, Chen X, Wang Z
. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology. 2020; 31(24):242001.
DOI: 10.1088/1361-6528/ab793e.
View
10.
Zhang X, Liu M, Zhang Z, Min H, Wang C, Hu G
. Highly Durable Bidirectional Rotary Triboelectric Nanogenerator with a Self-Lubricating Texture and Self-Adapting Contact Synergy for Wearable Applications. Small. 2023; 19(39):e2300890.
DOI: 10.1002/smll.202300890.
View
11.
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C
. Interface Engineering for Highly Efficient Organic Solar Cells. Adv Mater. 2023; 36(16):e2212236.
DOI: 10.1002/adma.202212236.
View
12.
Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H
. Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting. Adv Mater. 2022; 34(17):e2200042.
DOI: 10.1002/adma.202200042.
View
13.
Lai M, Du B, Guo H, Xi Y, Yang H, Hu C
. Enhancing the Output Charge Density of TENG via Building Longitudinal Paths of Electrostatic Charges in the Contacting Layers. ACS Appl Mater Interfaces. 2017; 10(2):2158-2165.
DOI: 10.1021/acsami.7b15238.
View
14.
Cha S, Cho Y, Kim J, Choi H, Ahn D, Sun J
. Controllable Triboelectric Series Using Gradient Positive and Negative Charge-Confinement Layer with Different Particle Sizes of Mesoporous Carbon Materials. Small Methods. 2022; 6(5):e2101545.
DOI: 10.1002/smtd.202101545.
View
15.
Wu H, He W, Shan C, Wang Z, Fu S, Tang Q
. Achieving Remarkable Charge Density via Self-Polarization of Polar High-k Material in a Charge-Excitation Triboelectric Nanogenerator. Adv Mater. 2022; 34(13):e2109918.
DOI: 10.1002/adma.202109918.
View
16.
Jaiswal M, Singh S, Sharma B, Choudhary S, Kumar R, Sharma S
. Sodium Niobate Nanowires Embedded PVA-Hydrogel-Based Triboelectric Nanogenerator for Versatile Energy Harvesting and Self-Powered CO Gas Sensor. Small. 2024; 20(38):e2403699.
DOI: 10.1002/smll.202403699.
View
17.
Hu Y, Li Q, Long L, Yang Q, Fu S, Liu W
. Matching Mechanism of Charge Excitation Circuit for Boosting Performance of a Rotary Triboelectric Nanogenerator. ACS Appl Mater Interfaces. 2022; 14(43):48636-48646.
DOI: 10.1021/acsami.2c12862.
View
18.
Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L
. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat Commun. 2020; 11(1):1030.
PMC: 7042353.
DOI: 10.1038/s41467-020-14846-4.
View
19.
Wang Z, Liu Z, Zhao G, Zhang Z, Zhao X, Wan X
. Stretchable Unsymmetrical Piezoelectric BaTiO Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano. 2022; 16(1):1661-1670.
DOI: 10.1021/acsnano.1c10678.
View
20.
Deng W, Zhou Y, Zhao X, Zhang S, Zou Y, Xu J
. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano. 2020; 14(7):9050-9058.
DOI: 10.1021/acsnano.0c04113.
View