6.
Kuo M, Jamshidi N
. Behind the numbers: Decoding molecular phenotypes with radiogenomics--guiding principles and technical considerations. Radiology. 2014; 270(2):320-5.
DOI: 10.1148/radiol.13132195.
View
7.
Jazieh K, Khorrami M, Saad A, Gad M, Gupta A, Patil P
. Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab. J Immunother Cancer. 2022; 10(3).
PMC: 8905876.
DOI: 10.1136/jitc-2021-003778.
View
8.
Gray J, Ahn M, Oxnard G, Shepherd F, Imamura F, Cheng Y
. Early Clearance of Plasma Epidermal Growth Factor Receptor Mutations as a Predictor of Outcome on Osimertinib in Advanced Non-Small Cell Lung Cancer; Exploratory Analysis from AURA3 and FLAURA. Clin Cancer Res. 2023; 29(17):3340-3351.
DOI: 10.1158/1078-0432.CCR-22-3146.
View
9.
Huynh E, Hosny A, Guthier C, Bitterman D, Petit S, Haas-Kogan D
. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020; 17(12):771-781.
DOI: 10.1038/s41571-020-0417-8.
View
10.
Jiao X, Qin B, You P, Cai J, Zang Y
. The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer. 2018; 123:70-75.
DOI: 10.1016/j.lungcan.2018.07.003.
View
11.
Jagoda P, Fleckenstein J, Sonnhoff M, Schneider G, Ruebe C, Buecker A
. Diffusion-weighted MRI improves response assessment after definitive radiotherapy in patients with NSCLC. Cancer Imaging. 2021; 21(1):15.
PMC: 7818746.
DOI: 10.1186/s40644-021-00384-9.
View
12.
Pfaehler E, Beukinga R, de Jong J, Slart R, Slump C, Dierckx R
. Repeatability of F-FDG PET radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys. 2018; 46(2):665-678.
PMC: 7380016.
DOI: 10.1002/mp.13322.
View
13.
Boehm K, Khosravi P, Vanguri R, Gao J, Shah S
. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer. 2021; 22(2):114-126.
PMC: 8810682.
DOI: 10.1038/s41568-021-00408-3.
View
14.
Li J, Wang H, Li Z, Zhang C, Zhang C, Li C
. A 5-Gene Signature Is Closely Related to Tumor Immune Microenvironment and Predicts the Prognosis of Patients with Non-Small Cell Lung Cancer. Biomed Res Int. 2020; 2020:2147397.
PMC: 6975218.
DOI: 10.1155/2020/2147397.
View
15.
Groheux D, Hindie E, Delord M, Giacchetti S, Hamy A, de Bazelaire C
. Prognostic impact of (18)FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012; 104(24):1879-87.
PMC: 3525816.
DOI: 10.1093/jnci/djs451.
View
16.
Berenguer R, Pastor-Juan M, Canales-Vazquez J, Castro-Garcia M, Villas M, Mansilla Legorburo F
. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018; 288(2):407-415.
DOI: 10.1148/radiol.2018172361.
View
17.
Zhang N, Liang R, Gensheimer M, Guo M, Zhu H, Yu J
. Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer. Theranostics. 2020; 10(25):11707-11718.
PMC: 7546006.
DOI: 10.7150/thno.50565.
View
18.
Chen X, Tong X, Qiu Q, Sun F, Yin Y, Gong G
. Radiomics Nomogram for Predicting Locoregional Failure in Locally Advanced Non-small Cell Lung Cancer Treated with Definitive Chemoradiotherapy. Acad Radiol. 2020; 29 Suppl 2:S53-S61.
DOI: 10.1016/j.acra.2020.11.018.
View
19.
Beig N, Khorrami M, Alilou M, Prasanna P, Braman N, Orooji M
. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology. 2018; 290(3):783-792.
PMC: 6394783.
DOI: 10.1148/radiol.2018180910.
View
20.
van Velden F, Kramer G, Frings V, Nissen I, Mulder E, de Langen A
. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol. 2016; 18(5):788-95.
PMC: 5010602.
DOI: 10.1007/s11307-016-0940-2.
View