6.
El-Atrees D, El-Kased R, Abbas A, Yassien M
. Characterization and anti-biofilm activity of bacteriophages against urinary tract Enterococcus faecalis isolates. Sci Rep. 2022; 12(1):13048.
PMC: 9336127.
DOI: 10.1038/s41598-022-17275-z.
View
7.
da Silva R, Afonina I, Kline K
. Eradicating biofilm infections: an update on current and prospective approaches. Curr Opin Microbiol. 2021; 63:117-125.
DOI: 10.1016/j.mib.2021.07.001.
View
8.
Miethke M, Pieroni M, Weber T, Bronstrup M, Hammann P, Halby L
. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021; 5(10):726-749.
PMC: 8374425.
DOI: 10.1038/s41570-021-00313-1.
View
9.
Ceri H, Olson M, Stremick C, Read R, Morck D, Buret A
. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999; 37(6):1771-6.
PMC: 84946.
DOI: 10.1128/JCM.37.6.1771-1776.1999.
View
10.
Gunjal V, Thakare R, Chopra S, Reddy D
. Teixobactin: A Paving Stone toward a New Class of Antibiotics?. J Med Chem. 2020; 63(21):12171-12195.
DOI: 10.1021/acs.jmedchem.0c00173.
View
11.
Heydorn A, Nielsen A, Hentzer M, Sternberg C, Givskov M, Ersboll B
. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology (Reading). 2000; 146 ( Pt 10):2395-2407.
DOI: 10.1099/00221287-146-10-2395.
View
12.
Narenji H, Teymournejad O, Rezaee M, Taghizadeh S, Mehramuz B, Aghazadeh M
. Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcusfaecalis. Microb Pathog. 2019; 139:103907.
DOI: 10.1016/j.micpath.2019.103907.
View
13.
Hillock N, Merlin T, Turnidge J, Karnon J
. Modelling the Future Clinical and Economic Burden of Antimicrobial Resistance: The Feasibility and Value of Models to Inform Policy. Appl Health Econ Health Policy. 2022; 20(4):479-486.
PMC: 8977126.
DOI: 10.1007/s40258-022-00728-x.
View
14.
Homma T, Nuxoll A, Brown Gandt A, Ebner P, Engels I, Schneider T
. Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis. Antimicrob Agents Chemother. 2016; 60(11):6510-6517.
PMC: 5075054.
DOI: 10.1128/AAC.01050-16.
View
15.
Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C
. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol. 2019; 103(11):4565-4574.
DOI: 10.1007/s00253-019-09808-w.
View
16.
Todd Rose F, Darnell R, Morris S, Rose O, Paxie O, Campbell G
. The two-component system CroRS acts as a master regulator of cell envelope homeostasis to confer antimicrobial tolerance in the bacterial pathogen Enterococcus faecalis. Mol Microbiol. 2023; 120(3):408-424.
PMC: 10952268.
DOI: 10.1111/mmi.15128.
View
17.
Shlezinger M, Coppenhagen-Glazer S, Gelman D, Beyth N, Hazan R
. Eradication of Vancomycin-Resistant Enterococci by Combining Phage and Vancomycin. Viruses. 2019; 11(10).
PMC: 6833023.
DOI: 10.3390/v11100954.
View
18.
Parmar A, Iyer A, Prior S, Lloyd D, Goh E, Vincent C
. Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding. Chem Sci. 2018; 8(12):8183-8192.
PMC: 5855875.
DOI: 10.1039/c7sc03241b.
View
19.
Fulaz S, Vitale S, Quinn L, Casey E
. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019; 27(11):915-926.
DOI: 10.1016/j.tim.2019.07.004.
View
20.
Parmar A, Lakshminarayanan R, Iyer A, Mayandi V, Goh E, Lloyd D
. Design and Syntheses of Highly Potent Teixobactin Analogues against Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococci (VRE) in Vitro and in Vivo. J Med Chem. 2018; 61(5):2009-2017.
DOI: 10.1021/acs.jmedchem.7b01634.
View