» Articles » PMID: 39252011

Spatial Regulation of NMN Supplementation on Brain Lipid Metabolism Upon Subacute and Sub-chronic PM Exposure in C57BL/6 Mice

Overview
Publisher Biomed Central
Specialty Toxicology
Date 2024 Sep 9
PMID 39252011
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Atmospheric particulate matter (PM) exposure-induced neuroinflammation is critical in mediating nervous system impairment. However, effective intervention is yet to be developed.

Results: In this study, we examine the effect of β-nicotinamide mononucleotide (NMN) supplementation on nervous system damage upon PM exposure and the mechanism of spatial regulation of lipid metabolism. 120 C57BL/6 male mice were exposed to real ambient PM for 11 days (subacute) or 16 weeks (sub-chronic). NMN supplementation boosted the level of nicotinamide adenine dinucleotide (NAD) in the mouse brain by 2.04 times. This augmentation effectively reduced neuroinflammation, as evidenced by a marked decrease in activated microglia levels across various brain regions, ranging from 29.29 to 85.96%. Whole brain lipidomics analysis revealed that NMN intervention resulted in an less increased levels of ceramide (Cer) and lysophospholipid in the brain following subacute PM exposure, and reversed triglyceride (TG) and glycerophospholipids (GP) following sub-chronic PM exposure, which conferred mice with anti-neuroinflammation response, improved immune function, and enhanced membrane stability. In addition, we demonstrated that the hippocampus and hypothalamus might be the most sensitive brain regions in response to PM exposure and NMN supplementation. Particularly, the alteration of TG (60:10, 56:2, 60:7), diacylglycerol (DG, 42:6), and lysophosphatidylcholine (LPC, 18:3) are the most profound, which correlated with the changes in functional annotation and perturbation of pathways including oxidative stress, inflammation, and membrane instability unveiled by spatial transcriptomic analysis.

Conclusions: This study demonstrates that NMN intervention effectively reduces neuroinflammation in the hippocampus and hypothalamus after PM exposure by modulating spatial lipid metabolism. Strategies targeting the improvement of lipid homeostasis may provide significant protection against brain injury associated with air pollutant exposure.

References
1.
Hajipour S, Farbood Y, Gharib-Naseri M, Goudarzi G, Rashno M, Maleki H . Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci. 2019; 242:117210. DOI: 10.1016/j.lfs.2019.117210. View

2.
Turner J, Licollari A, Mihalcea E, Tan A . Safety Evaluation for Restorin® NMN, a NAD+ Precursor. Front Pharmacol. 2021; 12:749727. PMC: 8632654. DOI: 10.3389/fphar.2021.749727. View

3.
Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson C . Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019; 18(4):394-405. DOI: 10.1016/S1474-4422(18)30500-3. View

4.
Eurtivong C, Leung E, Sharma N, Leung I, Reynisson J . Phosphatidylcholine-Specific Phospholipase C as a Promising Drug Target. Molecules. 2023; 28(15). PMC: 10420013. DOI: 10.3390/molecules28155637. View

5.
Sumida H, Lu E, Chen H, Yang Q, Mackie K, Cyster J . GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci Immunol. 2017; 2(18). PMC: 5847323. DOI: 10.1126/sciimmunol.aao1135. View