Tailored Chemotherapy: Innovative Deep-learning Model Customizing Chemotherapy for High-grade Serous Ovarian Carcinoma
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Zhao J, Zhao J, Lin F, Xu L, Chen Z, Jiang Y BMC Cancer. 2024; 24(1):1272.
PMID: 39397012 PMC: 11472586. DOI: 10.1186/s12885-024-13042-7.
References
1.
Sun J, Bao S, Xu D, Zhang Y, Su J, Liu J
. Large-scale integrated analysis of ovarian cancer tumors and cell lines identifies an individualized gene expression signature for predicting response to platinum-based chemotherapy. Cell Death Dis. 2019; 10(9):661.
PMC: 6737147.
DOI: 10.1038/s41419-019-1874-9.
View
2.
Dong A, Lu Y, Lu B
. Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice. J Cancer. 2016; 7(11):1441-51.
PMC: 4964128.
DOI: 10.7150/jca.15556.
View
3.
Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A
. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209-249.
DOI: 10.3322/caac.21660.
View
4.
Zhang Y, Cao L, Nguyen D, Lu H
. TP53 mutations in epithelial ovarian cancer. Transl Cancer Res. 2019; 5(6):650-663.
PMC: 6320227.
DOI: 10.21037/tcr.2016.08.40.
View
5.
Hwangbo S, Kim S, Kim J, Eoh K, Lee C, Kim Y
. Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma. Cancers (Basel). 2021; 13(8).
PMC: 8070756.
DOI: 10.3390/cancers13081875.
View