6.
Li X, Kim J, Wu J, Ahamed A, Wang Y, Martins-Green M
. -Acetyl-cysteine and Mechanisms Involved in Resolution of Chronic Wound Biofilm. J Diabetes Res. 2020; 2020:9589507.
PMC: 7007959.
DOI: 10.1155/2020/9589507.
View
7.
Ye J, Su Y, Lin X, Lai S, Li W, Ali F
. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis. Front Microbiol. 2018; 9:29.
PMC: 5797687.
DOI: 10.3389/fmicb.2018.00029.
View
8.
Xu D, Xiao Y, Pan H, Mei Y
. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol Environ Saf. 2019; 174:43-47.
DOI: 10.1016/j.ecoenv.2019.02.063.
View
9.
Kaatz G, Moudgal V, Seo S, Kristiansen J
. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother. 2003; 47(2):719-26.
PMC: 151737.
DOI: 10.1128/AAC.47.2.719-726.2003.
View
10.
Pandey V, Bhat R, Chandra S, Tandel R, Dubey M, Sharma P
. Clinical signs, lethal dose and histopathological lesions in grass carp, Ctenopharyngodon idella experimentally infected with Edwardsiella tarda. Microb Pathog. 2021; 161(Pt B):105292.
DOI: 10.1016/j.micpath.2021.105292.
View
11.
Slaven E, Lopez F, Hart S, Sanders C
. Myonecrosis caused by Edwardsiella tarda: a case report and case series of extraintestinal E. tarda infections. Clin Infect Dis. 2001; 32(10):1430-3.
DOI: 10.1086/320152.
View
12.
Jiang M, Su Y, Ye J, Li H, Kuang S, Wu J
. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. Sci Adv. 2023; 9(10):eade8582.
PMC: 9995076.
DOI: 10.1126/sciadv.ade8582.
View
13.
Oliva A, Pallecchi L, Rossolini G, Travaglino F, Zanatta P
. Rationale and evidence for the adjunctive use of N-acetylcysteine in multidrug-resistant infections. Eur Rev Med Pharmacol Sci. 2023; 27(9):4316-4325.
DOI: 10.26355/eurrev_202305_32342.
View
14.
Li S, Xiang J, Zeng Y, Peng X, Li H
. Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. Microb Biotechnol. 2023; 17(1):e14379.
PMC: 10832521.
DOI: 10.1111/1751-7915.14379.
View
15.
Perez-Llarena F, Bou G
. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol. 2016; 7:410.
PMC: 4814472.
DOI: 10.3389/fmicb.2016.00410.
View
16.
Groisman E, Hollands K, Kriner M, Lee E, Park S, Pontes M
. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet. 2013; 47:625-46.
PMC: 4059682.
DOI: 10.1146/annurev-genet-051313-051025.
View
17.
Wesseling C, Martin N
. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis. 2022; 8(9):1731-1757.
PMC: 9469101.
DOI: 10.1021/acsinfecdis.2c00193.
View
18.
Xiang J, Li M, Li H
. Aspartate metabolic flux promotes nitric oxide to eliminate both antibiotic-sensitive and -resistant in zebrafish. Front Immunol. 2023; 14:1277281.
PMC: 10598754.
DOI: 10.3389/fimmu.2023.1277281.
View
19.
Goswami M, Jawali N
. N-acetylcysteine-mediated modulation of bacterial antibiotic susceptibility. Antimicrob Agents Chemother. 2010; 54(8):3529-30.
PMC: 2916349.
DOI: 10.1128/AAC.00710-10.
View
20.
Dhanda G, Acharya Y, Haldar J
. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS Omega. 2023; 8(12):10757-10783.
PMC: 10061514.
DOI: 10.1021/acsomega.3c00312.
View