Restricted Open-shell Time-dependent Density Functional Theory with Perturbative Spin-orbit Coupling
Overview
Chemistry
Authors
Affiliations
When using quantum chemical methods to study electronically excited states of open-shell molecules, it is often beneficial to start with wave functions that are spin eigenfunctions. For excited states of molecules containing heavy elements, spin-orbit coupling (SOC) is important and needs to be included as well. An efficient approach is to include SOC perturbatively on top of a restricted open-shell Kohn-Sham (ROKS) time-dependent density functional theory, which can be combined with the Tamm-Dancoff approximation (TDA) to suppress numerical instabilities. We implemented and assessed the potential of such a ROKS-TDA-SOC method, also featuring the possibility of calculating transition dipole moments between states to allow for full spectrum simulation. Our study shows that the ROKS-TDA-SOC formalism yields a clear and easy-to-use method to obtain electronically excited states of open-shell molecules that are of moderate size and contain heavy elements.