6.
Silva A, Pereira C, Fonseca A, Pinto-do-O P, Nascimento D
. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol. 2021; 8:621644.
PMC: 7835513.
DOI: 10.3389/fcell.2020.621644.
View
7.
Jones M, Andriotis O, Roberts J, Lunn K, Tear V, Cao L
. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. Elife. 2018; 7.
PMC: 6029847.
DOI: 10.7554/eLife.36354.
View
8.
Mainardi A, Carminati F, Ugolini G, Occhetta P, Isu G, Robles Diaz D
. A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab Chip. 2021; 21(21):4177-4195.
PMC: 8547330.
DOI: 10.1039/d1lc00092f.
View
9.
Raziyeva K, Kim Y, Zharkinbekov Z, Temirkhanova K, Saparov A
. Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines. 2022; 10(9).
PMC: 9496565.
DOI: 10.3390/biomedicines10092178.
View
10.
Garoffolo G, Pesce M
. From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. Curr Res Pharmacol Drug Discov. 2021; 2:100036.
PMC: 8663973.
DOI: 10.1016/j.crphar.2021.100036.
View
11.
Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell J, Lutolf M
. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010; 31(32):8454-64.
DOI: 10.1016/j.biomaterials.2010.07.046.
View
12.
Kaiser N, Kant R, Minor A, Coulombe K
. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng. 2019; 5(2):887-899.
PMC: 6372981.
DOI: 10.1021/acsbiomaterials.8b01112.
View
13.
Roman B, Kumar S, Allen S, Delgado M, Moncayo S, Reyes A
. A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes. Cardiovasc Eng Technol. 2021; 12(3):311-324.
PMC: 8972084.
DOI: 10.1007/s13239-020-00514-7.
View
14.
Wilks B, Evans E, Howes A, Hopkins C, Nakhla M, Williams G
. Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model. Adv Sci (Weinh). 2022; 9(10):e2103939.
PMC: 8981917.
DOI: 10.1002/advs.202103939.
View
15.
Rashedi I, Talele N, Wang X, Hinz B, Radisic M, Keating A
. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One. 2017; 12(10):e0187348.
PMC: 5663483.
DOI: 10.1371/journal.pone.0187348.
View
16.
Sharma A, De Blasio M, Ritchie R
. Current challenges in the treatment of cardiac fibrosis: Recent insights into the sex-specific differences of glucose-lowering therapies on the diabetic heart: IUPHAR Review 33. Br J Pharmacol. 2022; 180(22):2916-2933.
PMC: 10952904.
DOI: 10.1111/bph.15820.
View
17.
Wang E, Smith J, Radisic M
. Design and Fabrication of Biological Wires for Cardiac Fibrosis Disease Modeling. Methods Mol Biol. 2022; 2485:175-190.
DOI: 10.1007/978-1-0716-2261-2_12.
View
18.
Picchio V, Floris E, Derevyanchuk Y, Cozzolino C, Messina E, Pagano F
. Multicellular 3D Models for the Study of Cardiac Fibrosis. Int J Mol Sci. 2022; 23(19).
PMC: 9569892.
DOI: 10.3390/ijms231911642.
View
19.
Edalat S, Jang Y, Kim J, Park Y
. Collagen Type I Containing Hybrid Hydrogel Enhances Cardiomyocyte Maturation in a 3D Cardiac Model. Polymers (Basel). 2019; 11(4).
PMC: 6523216.
DOI: 10.3390/polym11040687.
View
20.
Hinderer S, Schenke-Layland K
. Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019; 146:77-82.
DOI: 10.1016/j.addr.2019.05.011.
View