6.
Gouda S, Kerry R, Das G, Paramithiotis S, Shin H, Patra J
. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res. 2017; 206:131-140.
DOI: 10.1016/j.micres.2017.08.016.
View
7.
Lee E, Ahn S, Park J, Lee J, Ahn S, Kong I
. Identification of oligopeptide permease (opp) gene cluster in Vibrio fluvialis and characterization of biofilm production by oppA knockout mutation. FEMS Microbiol Lett. 2004; 240(1):21-30.
DOI: 10.1016/j.femsle.2004.09.007.
View
8.
Sayers E, Beck J, Bolton E, Bourexis D, Brister J, Canese K
. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020; 49(D1):D10-D17.
PMC: 7778943.
DOI: 10.1093/nar/gkaa892.
View
9.
Wang L, Fan R, Ma H, Sun Y, Huang Y, Wang Y
. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426. BMC Genomics. 2023; 24(1):589.
PMC: 10548584.
DOI: 10.1186/s12864-023-09662-1.
View
10.
Chen X, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I
. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007; 25(9):1007-14.
DOI: 10.1038/nbt1325.
View
11.
Ji S, Paul N, Deng J, Kim Y, Yun B, Yu S
. Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases. Mycobiology. 2014; 41(4):234-42.
PMC: 3905128.
DOI: 10.5941/MYCO.2013.41.4.234.
View
12.
Stein T
. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005; 56(4):845-57.
DOI: 10.1111/j.1365-2958.2005.04587.x.
View
13.
Shi S, Yu J, Wang F, Wang P, Zhang Y, Jin K
. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci Total Environ. 2020; 755(Pt 2):142419.
DOI: 10.1016/j.scitotenv.2020.142419.
View
14.
Giorgio A, De Stradis A, Lo Cantore P, Iacobellis N
. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol. 2015; 6:1056.
PMC: 4594563.
DOI: 10.3389/fmicb.2015.01056.
View
15.
Fritze D, Pukall R
. Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. Int J Syst Evol Microbiol. 2001; 51(Pt 1):35-37.
DOI: 10.1099/00207713-51-1-35.
View
16.
Patel S, Gupta R
. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus : Proposal for six new genera of species, gen. nov., gen. nov., gen. nov., gen. nov., gen. nov. and gen. nov. Int J Syst Evol Microbiol. 2019; 70(1):406-438.
DOI: 10.1099/ijsem.0.003775.
View
17.
Khan N, Ali S, Shahid M, Mustafa A, Sayyed R, Cura J
. Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells. 2021; 10(6).
PMC: 8234610.
DOI: 10.3390/cells10061551.
View
18.
Hasanuzzaman M, Fujita M
. Plant Oxidative Stress: Biology, Physiology and Mitigation. Plants (Basel). 2022; 11(9).
PMC: 9104056.
DOI: 10.3390/plants11091185.
View
19.
Davis J, Wattam A, Aziz R, Brettin T, Butler R, Butler R
. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2019; 48(D1):D606-D612.
PMC: 7145515.
DOI: 10.1093/nar/gkz943.
View
20.
Glickmann E, Dessaux Y
. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995; 61(2):793-6.
PMC: 1388360.
DOI: 10.1128/aem.61.2.793-796.1995.
View